AUTHOR TITLE

INSTITUTION
SPONS AGENCY
PUB DATE
CONTRACT
NOTE
EDRS PRICE
DESCRIPTORS

IDENTIFIERS

Frankel, Martin R.; And Others
High School and Beyond: A National Longitudinal Study For the 1980 's. Sample Design Report.
National Opinion Research Center, Chicago, 111. National Center for Education Statistics (ED), Washington, D.C.
Dec 81 300-78-0208
261p.; Small print in some tables.
MF01/PCll Plus Postage.
Catholic Schools; *Grade 10; *Grade 12; High Schools; *High School Students; *Longitudinal Studies; Minority Groups; Private Schools; Public Schools; Research Design; *Sampling; *School Surveys; Student Characteristics *High School and Beyond (NCES); *Stratification

ABSTRACT

The 1980 National Center for Education Statistics' National Longitudinal Survey, "High School and Beyond," was intended to be a general, multi-purpose study, serving a number of diverse needs. The present study sought to increase the data's usefulness, accuracy, and scope. While allowing for analyses of schools and studants on a national level, the study also permitted separate analyses on specific types of schools and subclasses of students. sIncluded are descriptions of the sample design, sample selection, and sample results. Chapter 2 discusses the construction of the sample frame of high schools in the United States. Chapter 3 examines the manipulation of the frame with respect to its stratified design, while the actual school selection procedures and results are reviewed in chapter 4. Chapter 5 then describes the construction of the student gampling frame, the selection of students, and those results. The last two chapters examine the calculations of the sample weights and the sampling errors. (Author/GK)

[^0]

SAMPLE DESIGN REPORT

A Report to the National Center for Education Statistics under Contract No. 300-78-0208 by the National Opinion Research Center

Martin R. Frankel
Luane Kohnke
David Buonanno
Roger Tourangeau

December 1981

TABLE OF CONTENTS

PREFACE xi
ACKNOWLEDGMENTS xv

1. HIGH SCHOOL AND BEYOND SAMPLE DESIGN 1
2. SAMPLING FRAME CONSTRUCTION 3
2.1 Sources 3
2.2 General matching procedures 5
2.3 Matching procedures: public schools 5
2.4 Matching procedures: private schools 18
2.5 NORC public school/non-public school universe attachment 20
2.6 NORC school universe file cleaning 20
2.7 Final NORC high school universe file 23
3. SCHOOL UNIVERSE STRATIPICATION 32
3.1 Stratification design 33
3.2 Public school stratification 36
3.3 Private school stratification 48
3.4 Washington state augmentation sample 54
4. SCHOOL SAMPLE SELECTION 56
4.1 Primary selections 56
4.2 Supplemental selections 73
4.3 Initial school sample 82
4.4 Superstratum completion rates 88
4.5 School non-response 93
4.6 Final school sample 107
5. STUDENT SAMPLE SELECTION 113
S. 1 Student sample frame 113
5.2 Student sample selection 116
5.3 Student sample update 117
5.4 Student non-response 120
6. SAMPLE WEIGHTS 151
6.1 School level weights 151
6.2 Student level weights 154
6.3 Overall design weights 156
6.4 Post-stratification weights 156
6.5 Washington state sample weights 160
7. SAMPLING ERRORS 163
7.1 Extra sampling errors 163
7.2 Approximate sampling errors 166
APPENDIX

LISt $\int_{\text {F }}$ ILlustrations

Figure Page
2.1 Contents of NORC high school universe file 24
4.1 Substitution and replacement procedures 77
Table Page
2.1. CIC/OCR public school district match 8
2.2. CIC/OCR public school match 9
2.3. NORC public school universe (stage 1) 11
2.4. DRC income file/NORC universe match 12
2.5. NCES-CCD/NORC public school district match 14
2.6. NCES-CCD/NORC public school match - step 1 15
2.7. NCES-CCD/NORC public school match - step 2 15
2.8. The racial composition/second stage NORC public school universe match 17
2.9. The DRC income/second stage NORC public school universe match 17
2.: 0 . NCES/CIC non-public school universe match 19
2.11. Preliminary NORC private school universe file 19
2.12. DRC income file/NORC private school universe match 20
2.13: Cleaning of NORC high school universe file 21
2.14. NORC school universe of schools and students by census region and school type 27
2.15. NORC school universe of schools and students by census division and school type 28
2.16. NORC school universe of schools and students by level of urbanization and school type 29
2.17. NORC school universe of schools and students by percentage Black and school type 30
2.18. NORC school universe of s chools and students by size of average enrollment and school type 31
3.1. Non-alternative, non-Hispanic public school stratification 39
3.2. Non-alternative, Hispanic public school stratification 44
3.3. Alternative public school stratification 47
3.4:- Non-Catholic private school stratification 49
3.5. Catholic school stratification 53
3.6. Washington state sugmentation stratification 55
4.1. Sample allocations by school type 58
4.2. Non-alternative, non-Hispanic public school sample 63
4.3. Selection intervals and random starts for non-alternative, non-Hispanic public schools 65
4.4. Non-alternative, Hispanic public school sample 68
4.5. Selection intervals and random starts for non-alternątive, non-Cuban Hispanic public schools 69
4.6. Selection intervals and random starts for alternative public schools 71
4.7. Selectinn intervals and random starts for private schools 72
4.8. Replacement selection starts for superstratum with out-of-scope schools 80
4.9. HS\&B initial school sample of schools and students by census region and school type 83
4.10. HS\&B initial school sample of schools and students by census division and school type 84
4.11. HS\&B initial school sample of s chools and students by level of urbanization and school type 85
$4.12 \quad$ nitial schcpl sample of schools and students tag'e Biack and school type 86
4.13..$a 1$ school sample of schools and students age enrollment and school type 87
4.14. Sampling rates, eligibility rates, and response rates for initial HS\&B sample 89
4.15A. Dispositions for out-of-scope replac ant schools 91
4.15B. Dispositions for originally selected schools and out-of-scope replacement schools 92
4.16. Overall HS\&B school non-eligibility and non-response rates by school type and superstratum 94
4.17. Overall HS\&B school ineligibility rates by census region, school type, and selected superstratum 96
4.18. Overall HS\&B school ineligibility rates by census division, school type, and selected superstratum 97
4.19. Overall HS\&B school ineligibility rates by urbanization level, school type, and superstratum 98
4.20. Overall HS\&B school ineligibility rates by percent Black, school type, and superstratum 99
4.2l. Overall HS\&B school ineligibility rates by average enrollment size, school type and superstratum 100
4.22. Overall HS\&B school refusal rates by census region, school type, and selected superstratum 102
4.23. Overall HS\&B school refusal rates by census division, school type, ànd selẹted superstratum 103
4.24. Overall HS\&B school refusal rates by urbanization level, school type, and superstratum 104
4.25. Overall HS\&B school refusal rates by percent Biack, echool type, and superstratum 105
4.26. Overall HS\&B schóol refusal rates by average enreollment size, school type, and superstratum 106
4.27. HS\&B final school sample of schools and students by census region and school type 108
4.28. "HS\&B final school sample of schools and students by census division and school type 109
4.29. HS\&B final school sample of schools and students by level of urbanization and shool type 110
4.30. HS\&B final school sample of schools and students by percentage Black and school type 111
4.31. HS\&B final school sample of schools and students by average enrollment and school type 112
5.1. HS\&B unweighted and weighted student non-response rates by school type and superstratum 122
5.2A. HS\&B student non-response rates by school type, selected superstratum, grade, and census region 124
5.2B. HS\&B weighted student non-response rates by school type, selected superstratum, grade, and census region 125
5.3A. HS\&B student non-response rates by school type, selected superstratum, grade, and census division 126
5.3B. HS\&B weighted student non-response rates by school type, selected superstràtum, grade, and census division 127
5.4A. HȘB student non-response rates by school type, superstratum, grade, and level of urbanization 129
5.4B. HS\&B. weighted studedb non-response. rates by school type, superstratum, grade, and level of urbanization 131
5.5A. HS\&B student non-response rates by school type, superstratum, grade, and percèntage Black 133
5. 3 B. HS\&B weighted student non-response rates by school type, superstratum, grade, and percentage Black 135
5.6A. HS\&B student noñ-response rates by school type, superstratum, grade and average enrollment 137
5.6B. HS\&B weighted student non-response rates by school type, superstratum, grade, and average enrollment 139
5.7A. HS\&B student non-response rates by school type, superstragin, grade, and race 142
5.7B. HS\&B weidhted student non-response rates by school type, superstrafum, grade, and race 143
5.8A. HS\&B student non-response rates by school type, superstratum, grade, and sex 144
5.8B. HS\&B weighted student non'response rates by school type, superstratum, grade, and sex 146
5.9A. HS\&B student non-response rates by school type, superstratum, grade, and academic program 148
5.9B. HS\&B weighted student non-responfe rates by school type, superstratum, grade, and academic program 149
6.1. Public school enrollment data comparisons between the fall 1979 NCES survey and the HS\&B population projections, by region and grade 158
6.2. Private school enrollment data comparisons between the fall 1978 NCES survey and the HS\&B population projections, by region and grade 159
7.1. DEFT factors for percentages: sophomores and seniors 168
7.2. DEFT factors for means: sophomores and seniors 169

PREFACE

The data and analyses presented in this report are from the first (1980) wave of the National Center for Education Statistics study High School and Beyond, a longitudinal study of U.S. high school seniors and sophomores. This study was conducted for NCES by the National Opinion Research Center at the University of Chicago.

The sample was a two-stage stratified probability sample with schools within a stratum drawn with a probability proportional to their size. Once a school was selected, up to 36 sophomores and 36 seniors were drawn randomly from the students enrolled in each selected school.

Several special strata were included in the sample design. Schools in these special strata were selected with probabilities higher than those for schools in regular strata to allow for special study of certain types of schools or students. The following kinds of schools were oversampled:

P Public schools with high proportions of Hispanic (Cuban, Puerto Rican, and Mexican) students.

- Catholic schools with high proportions of minority group students.
- Public alternative schools.
- Private, schools with high proportions of National Merit Scholarship finalists.
. 3
Substitutions were made for noncooperating schools in those strata where it was possible: Out of 1,122 possible schools, students at 1,015 schools and school administrators from 988 schools filleu nut questionnaires.

In many schools the actual number of seniors and sophomores was less than the target number for several reasons. First, in some schools fewer than the number 36 sophomores or 36 seniors were enrolled. This reduced the number of eligible students from 73,080 (72 students in each of $1,015 \mathrm{schools}$) to 69,662. Second, 8,278 students were absent on the survey date. Third, 1,982
students, or in some cases their parents, declined to participate, exercising their right in a voluntary survey. Substitutions were not made for noncooperating students. Finally, l, 132 cases were deleted because they contained only very incomplete information. Thus, data are available for 30,030 sophomores and 28,240 seniors. This represents a completion rate of 84 percent: 58,270 out of the 69,662 eligible students. In addition to the students in the regular sample, data were collected from friends and twins of participating students.

Weights were calculated to reflect differential probabilities of sample selection and to adjust for nonresponse. Using appropriate weights yields estimates for high school sophomores and seniors in the United States and separate estimates for schools or students clatsified in various ways, such as by geográphical region or school type.

Information of several sorts was obtajned in the survey. Students completed questionnaires of about one hour/in length, and took a battery of tests with a total testing time of about one and one-belf hours. School officials completed questionnaires covering items of information about the schools. Finally, teachers gave their perceptions of specified characteristics of students in the sample whom they had had in class, to provide information beyond the students' own reports about themselves.

This report is one of several analyzing High School and Beyond base year survey data. The study was designed to be relevant both to many policy issues and to many fundamental questions concerning gouth development and educational institutions. It is intended to be analyzed by a wide range of users, from those with immediate policy concerns to those with interests in more fundamental or long-range questions.

As succeeding waves of data on a subsample of these students tecome
available (at apprcximately two-year intervals), the richness of the dataset, and the scope of questions that can be studied through it, will expand. In addition, use of the data in conjunction with NCES's study of the cohort of 1972 seniors, (also available from NCES), for which data at five time points are now available, enriches the set of questions that can be studied.

The data are available on computer tape for a nominal fee from:
Statistical Information Office
National Center for Education Statistics
1001 Presidential Building
400 Maryland Avenue, SW
Washington, D.C. 20202
Phone: (202) 436-7900

ACKNOWLEDGMENTS

The design of HIGH SCHOOL AND BEYOND was initially develeped by the Longitudinal Studies Branch of the National Center for Education Statistics. Edith M. Huddleston, NCES project officer for HIGH SCHOOL AND BEYOND, and William B. Fetters, mathematical statistician, have guided this project since its inception, and have been responsible for many aspects of the research design. The current NCES project officer.is Samuel S. Peng.

A study of this scope and magnitude would not have been possible without the active cooperation of many persons at various levels of educational administration: Chief State School Officers, Catholic Archdioceses and other private school organizations, principals and teachers in the schools, and of course, the students and their parents. The expertise, support, and persuasiveness of numerous study coordinators at participating schools was especially critical to the successful conduct of the study. Those who will use these data for the study of American education are deeply indebted to all these people.

A second debt is owed to all those people on the field and project staff of HIGH SCHOOL AND BEYOND, whose efforts brought into being the data that will make possible the study of issues involving young people and their schools, data on which the present report is based.

Special thanks are due to members of the National Planning Committee, who have been active in advising NCES on the design, implementation, and uses of the study: Ellis B. Page, Chairman (Duke University), Robert F. Boruch (Northwestern University), Bruce K. Eckland (University of North Carolina, Chapel Hill), Barbara Heyns (New York University), David S. Mundel (Employment and Economic Policy Administration, City of Boston), Robert C. Nichols (State University of New York, Buffalo), Sally B. Pancrazio (Illinois Office of Education), and David E. Wiley (Northwestern University).

The National Opinion Research Center (NORC), under the direction of NCES, took responsibility for the remainder of the design and conducted the base-year survey; NORC's preliminary analysis of the base year data contributed to the development of this publication. James S. Coleman served as Principal Investigator at NORC, with Carol B. Stocking as Project

Director. Other contributing NORC staff members were Fansayde Calloway, who directed field work for the project, and Antoinette Delk, Larry Dornacker, Martin Frankel, and Natalie Suter.

CHAPTER 1

HIGH SCHOOL AND BEYOND
SAMPLE RESIGN

The 1980 National Center for Education Statistics' National Longitudinal Survey, "High School and Beyond," was intended to be a general, multi-purpose study, serving a number of diverse needs. For example, while attempting to collect data comparable to the 1972 study, the present study sought to increase the data's usefulness, accuracy, and scope. While allowing for analyses of schools and students on a national level, the study also permitted separate analyses on specific types of schools and subclasses of students.

NORC's sample design reflected these survey objectives. On one level, the design yielded a probability sample of approximately 36,000 sophomores and 36,000 seniors capable of national projections. On another level, the sample was one in whicn Blacks, Hispanics, Alternative Public schools, and specific types of Private schools were sufficiently overrepresented to allow for separate analyses. The sample design was also flexible enough for individual states to request a large enough sample for a within-state representative sample of schools and students.

In general, the HS\&B sample was a two-stage stratified cluster sample. In the first stage, an updated sample frame of public and private high schools in the United States was stratified (grouped and ordered) according to several key variables. These variables were similar to the stratification variables used in the eariler atudy. The clusters (in this case, the schools) were then selected within each stratum of schools with probabilities proportional to the size of their estimated average tenth. and/or twelfth grade enrollment.

By defining stratum or strata groups in accord with domains of study, it was possible to oversample certain types of schools to insure a sufficient sample size for independent analyses. We also incorporated procedures which allowed explicit replacement of schools which refused to cooperate or which were ineligible for selection.

In the second stage of the sample, NORC selected 36 students from both the sophomore and senior classes of each selected school. We incorporated provisions to account for changes in the student sample frame between the time of sample selection and the actual date of interviewer visit. We also adjusted the final sample to account for school and atudent non-response. Final* y, to measure the sampling variability of the sample estimates, we computed the exact design-specific standard errors for certain variables, and approximation factors for other variables.

What follows is a detailed description of the sample design, sample seletion, and sample results. Chapter 2 discusses the construction of the sample frame of high schools in the United States. Chapter 3 examines the manipulation of the frame with respect to its stratified design, while the actual school selection procedures and results are reviewed in chapter 4. Chapter 5 then describes the construction of the student sampling frame, the selection of students, and those results. The last two chapters examine the calculations of the sample weights and the sampling errors.

CHAPTER 2

SAMPLE FRAME CONSTRUCTION

In designing a sample frame, one can either use an explicit or an Implicit list of the elements to be sampled. For the High School and Beyond survey, the creation of an explicit list of all high school sophomores and seniors in the United States would have been an impossible task. NORC therefore opted to use an implicit list of students by constructing a list of public and private schools in the United States. It was imperative, however, that the list of schools be as complete and accurate as possible, and that as many of the schools as possible have data on the variables to be used in the subsequent stratification of the sample frame.

2.1 Sources

In the 1972 study, Westat used the Office of Education's (OE) 1970-1971 School Universe Tape. Since there was no equivalent OE tape for 1978-1979, NORC decided to use the 1978-79 "School Universe Compater File" distributed by the Curriculum Information Center, Inc. (CIC) of Denver, Colorado. The CIC school universe tape included both public and private (parochial and nonparochial) schools, as well as schools that were neither private nor part of a specific public school district. The latter group included area vocational schools, Department of Defense overseas schools, Bureau of Indian Affiars schools, and "continuation" schools. ${ }^{1}$
1_{A} continuation school is a school in California which enrolls high school dropouts to fulfill California's requirement of attendance up to 18 years of age. No diploma is granted but graduation requidements do exist.

Another asset of the CIC school universe file was its annual record updating procedure, conducted by surveying each school by telephone. In addition, CIC received a continual flow of information from the National Catholic Education Association (NCEA), the Council for American Private Education (CAPE), the Bureau of Indian Affairs (BIA), and the Department of Defense (DoD) regarding school openings, closings, enrollments, and the like. Given this, NORC concluded that the CIC tape was the most complete and accurate list of schools available at the time.

However, to test the CIC school universe file's comprehensiveness, NORC decided to check the CIC file against the National Center for Education Statistics' (NCES) non-public school survey computer file, and the NCES Common Core Data (NCES-CCD) public school survey computer file. Any school in these files that was not included in the CIC file was added to the CIC file to create a final NORC high school universe file.

Finally, the CIC school universe tape did not include two of the variables presumed necessary for stratification: racial composition ind community income level. To obtain the former, NORC examined the 1976 and the 1972 DHEW/ Office of Civil Rights (OCR) Secondary School Civil Rights Computer File of public schools, and the National Catholic Education Association's (NCEA) schools list for public and Catholic schools, respectively. The Demographic Research Company's (DRC) Income Information computer file provided the schools' commanity income levels. Any schools in the updated universe file which still did not have the required stratizication data were linked to the listing of the school's community in the 1977 County and City Data Book or the 1970 Census Data Book to complete the missing information.

2. 2 General Matching Procedure

In general, NORC used the same procedures whenever we matched two school universe files. First, we "cleaned" the two computer tapes, 1.e., school districts without high schoole, and other inappropriate schools or school districts were eliminated from each file. Next, NORC sequentially ordered each school universe file according to its respective identifying codes. Then, specially designed computer programs scanned the two school universe files for duplicate schoois. Since the programs could not perform this matching procedure alone, we also matched the schools manually. In each case, the result was a single school universe file containing the matched schools plus in some cases, the unique schools from the separate files. The final step involved the linking of stratification data to the school or school district, again by computer programs and by hand.

2.3 Matching Procedures - Public Schools

2.3.1 CIC/OCR Universe Match

Since the OCR public school universe file contained the most complete set of racial composition data, NORC decided to match the CIC public school and the OCR public school universe files first.

2.3.1.1 File Preparation

The CIC school universe file initially contained records for 12,253 public high school districts, which heid records for a total of $18,239 \mathrm{high}$ schools. First, we eliminated 245 subdistricts from the file, with the exception of subdistricts in the states of Maine, New Hampshire, and Vermont, due to the unique district structure in these three states. From the remaining

12,008 districts, NORC deleted 7 districts which did not have schools with tenth or twelfth grade classes. We then sorted the final 12,001 school dis-, tricts by CIC state county and district codes.

Each school district in the CIC file contained the following data: CIC codes (state number, county number, CIC district number); the district's name, address, $z i p$ code, county name, phone number, grade span, and exact enrollment; and the CIC district level code. Each individual school in the CIC file had the following information: the school's CIC code, building number, name, address, $2 i f$ code, enrollment, grade span, type (regular public, area vocational, regional/county center schools) and 10 th/l2th grade combination.

The OCR school universe file was primarily a file of 15,748 public school districts. However, only 3,650 of these districts had information on the individual schools within the districts. These 3,650 districts were the whole of a weighted random sample (from the 15,748 districts) capable of state-by-state and national projections. This sample was used in OCR's 1976 Elementary and Secondary Schcol Civil Rights Survey.

Of the 3,650 school districts with individual school records, 384 districts had neither a tenth nor a twelfth grade class. These subsequently were deleted from the file. We sorted the remaining 3, 266 : stricts with school data and the 12,098 districts without school information by state and district OCR codes, in ascending nrder.

Each school district in the OCR file contained the following information: OCR code (state and district numbers); and the district's name, county name, city name, zip code, number of individual schools, number of students by race, and total enrollment. The districts with individual school information had the following information for each school: $O C R$ code, school $O E$ code, and the school's name, number of grades and the number of students by race.

2.3.1.2 CIC/OCR School Universe Matching Procedure

Since there was no common ID code for the CIC and OCR districts or schools, the matching of the two universe files necessarily involved the alphanumeric linking of the district/school names, county names, city names, and $z 1 p$ codes. This was performed first on the district level, and then on the school level.

2.3.1.3 District Matching Procedures

To link identical districts in the two files, NORC scanned and compared the alphanumeric items of district name, county name, city name, and zip code. To facilitate the matching procedure, we used a specially designed FORTRAN alpha-matching computer program.

Initially, we divided each universe file's districts into 51 subsets according to the state (and Washington, D.C.) in which the districts were located by assigning CIC two-digit alpha state codes to the OCR district records. Then, within each state, the computer program scanned and compared the districts' name several times, each time subtracting one character from the district name.

Two problems emerged immediately. First, in many cases the district names in both files were not equivalent due to missing, abbreviated, or mispelled names. Second, many different districts had the same name. The first problem, which prevented duplicate districts from being matched, was solved by modifying the FORTRAN program. The second problem, which caused incorrect matchings, was resolved by comparing the county and city names and the $z i p$ codes of these incorrectly matched districts. Finally, since the FOPTRAN program could not handle all of the matching, NORC used manual scanning techniques to solve any remaining problems.

This procedure =esulted in the matching of a total of 11,493 school districts. Of these matched districts, 8,285 were $O C R$ districts without individual school records that were linked to CIC districts with a total of 9,190 CIC schools. The additional 3,208 matched districts were OCR districts comprised of 7,285 OCR schools, which were linked to CIC districts with 6.755 CIC schools. This left 3,813 of the 12,098 OCR districts without school records, and 58 of the $3,2660 C R$ districts with school records unmatched. Of the 12,001 CIC districts, only 508 were left unmatched. These included 2, 294 individual schools (see, table 2.1.).

Table 2.1.--CIC/OCR public school district match

Item	CIC file	Item	OCR file
Total districts	12,001	Total districts	15,354
Districts to be matched	12,001	Districts without school data	12,098
Districts matched to OCR ...	8,285 ${ }^{\text {/ }}$	Districts matched to CLC	8,285
Unmatched districts	3,716	Unmatched districts	3,813
Districte to be matched	3,716 ${ }^{\text {/ }}$	Districts with school data	3,266
Districts matched to OCR ...	3,208 ${ }^{\text {/ }}$	Districts matched to CIC	3,208 ${ }^{1 /}$
Unmatched districts	508	Unmatched districts	58
Total matched districts	11,493	Total matched districts	11,493
Total matched schools	15,945	Total matched schools	7,285
Total unmatched districts ..	508	Total unmatched districts	3,871
Total unmatched schools ..	2,294		

1/ Representing 9,190 schools
2/ Unmatched schools in previous matching attempt
3/ Representing 6,755 schools

2.3.1.4 School Matching Procedures

NORC executed the school matching procedure for all of the high schools with OCR school records in the matched districts. Thus, in the 3,208 matched districts, there were 7,285 schools from the $0 C R$ file and 6,755 schools from the CIC file. We gave each school an OCR' and a CIC district code, and then sorted the two files in ascending order by $O \dot{C} R$ state and district codes. The only item available for comparison was the schools' name, which we scanned with a slightly modified alpha-matching FORTRAN program that successively compared smaller and smaller character strings of the school names within each district. Ägain, as noted above (see section 2.2, District Mátching Procedure), the same problems existed and were solved by hand scanning of the schools' names, grade spans, or type codes.

In the end, we matched 5,524 schools via the computer with 589 additional matches picked up by hand. Thus the total number of matched schools was $6,113$. This left 642 CIC and 1,172 OCR schools unmatched (see table 2.2.).

Table 2.2.--CIC/OCR public school match

1/ See table 2.1.

2.3.1.5 OCR Racial Data/CIC Universe Attachment Procedures

The primary reason for using the OCR File was to link the CIC schools to the district and school racial data contained in that file. This data was located on the OCR school and district records as the number of American Indians, Orientals, Blacks, Whites, and Hispanics in the school or district, respectively. For stratification purposes, we needed to convert those figures into percentages of the total district or school enrollment; we used a FORTRAN program designed for this purpose.

Initially, NORC took the 6,113 matched schools with OCR school records and computed the racial data directly from OCR school records. We then attached these-figures to those schools' records in the fiC universe file. For the remaining 9,190 matched schools which did not have OCR.school records, we computed the racial data from the schools' OCR district records. The computer program again attached these figures to the CIC universe file, although some of the matching had to be performed manually. This resulted in 2,936 unmatched CIC schools without racial data and 15,303 matched CIC schools with racial data (see table 2.3.).

2.3.1.6 First Stage NORC Public School Universe File

To create the preliminary NORC public school universe file, we attached Gll of the unmatched schools from the CIC universe file to the matched schools. (The unmatched OCR schools were not added to this new file, since the OCR file was three years old.) Therefore, with 9,190 matched schools without OCR school records and 6,113 matched schools with OCR school records, the total number of matched schools was 15,303 . To this we added the 2,936 unmatched CIC schools from the racial data match. This led to a total of 18,239 public ligh schools in the preliminary NORC public school universe file (see table 2.3.)

Table 2.3.--NORC public school untyerse (stage one)

Public school uniyerse	Number
-	
Total schools	18,239
Total matched schools (with racial data)	15;303
Matched schools (district match) $1 /$	9,190
	6,113
Total unmatched schools (without racial data)	2,936
Unmatched school's (district match) $1 /$	2,294
Unmatched schools (school match) ${ }^{\text {2 }}$	642

1/ See table 2.1.
 2/ See table 2.2.

2.3.2 DRC Income File/NORC Universe Match - Stage One

In orderyto have income data for each school in the universe, NORC obtained
the Income Computer File from the Demographic Research Company (DRC). This file contained the 1979 projections of the number of households, the median family income, and the percent of households with income over $\$ 25,000, \$ 15,000$ and $\$ 10,000$ for every zip code in the U.S. After sorting the 15,303 matched schools (with OCR racial data) and the DRC file in ascending $21 p$ code order, a specially designed zip code-matching FORTRAN computer program scanned the 21p codes and linked the income data to the schools' records. In this fashion, 14,892 of the 15,303 matched schools obtained income data. The remaining 411 schools remained unmatched due to missing school $21 p$ codes in the income and/ ur the school files. We therefore attached the school districts' 21 p codes to
the 411 schools and resorted the schools as before. Using the same computer program, we linked these 411 schools to the DRC file. This resulted in an additional 109 schools receiving the income data and left 302 schools without any income data but with racial data.

The 2,936 schools without racial composition data (those CIC schools left unmatched with the $O C R$ file) underwent the same procedure. In this fashion we were able to link 2,741 schools to the DRC income file via their $21 p$ sodes. The 195 remaining schools were supplied with their district's 2ip codes; 101 of them were inked with the DRC file, leaving 94 schools without income or OCR racial composition data. In sum, 396 schools did not nave income data. All missing data recortla were filled with "-1" (see table 2.4.).

Table 2.4.--DRC-Income file/NORC universe match
Schools With racial data Without racial data

Total schools ${ }^{\text {l }}$ /.	15,303	2,936
Total schools with income data	15,001	2,842
Linked via school zip code	14,892	2,741
Linked va, district 210 code	109	101
Total scn - ls without income jata ...	302	94

[^1]
2.3.3 NCES-CCD/NORC Universe Match

The final step in the creation of the public high school universe file was the matching of the NCES-CCD public school survey computer file with the preliminary publitc school universe file created y NORC (see section 2.3.1). The purppse here was to supplement the NORC universe to create a more comprehensive universe file.

2.3.3.1 File Preparation

The NCES-CCD file contained 77,281 public schools; only 15,414 of these had either a tenth or a twelfth grade. We sorted these 15,414 high schools by ascending OCR state and district codes; we did the same to the 15,226 OCR-coded schools ${ }^{1}$ in the NORC file.

2.3.3.2 Matching Procedures

2.3.3.2.1 District Match

Since both the NCES-CCD and the OCR-coded NORC schools had OCR district codes, NORC used a binary search procedure within each state to match the numerical codes. Of the 15,414 NCES-CCD high schools, 14,148 matched with school district codes in 13,151 of the 15,226 OCR-coded NORC high schools. This left 1,266 unmatched NCES-CCD high schools and 2,075 unmatch 6 I NORC schools, in addition to the 3,013 NORC schools which did not have $O C R$ codes (see table 2.5.). ${ }^{1}$
${ }^{1}$ While in the first match between the CIC and OCR files, we were able to link 15,303 schools, it turned out that 77 of them did not have OCR codes. Thus, at this point the NORC file had 15,226 schools with OCR codes and 3,013 (instead of 2,936) schools without OCR codes.

Table 2.5.--NCES-CCD/NORC public school district match

Schools	NORC		NCES-CCD
	With OCR dist. codes	Without OCR dist. codes	
Total-!	15,226	3,013	15,414
Matched	13,151	---	14,148
Unmat ched	2,075	3,013	1,266

1/ See footnote on preceding page.

2.3.3.2.2 School Match

The next step was matching the 14,148 district-matched NCES-CCD schools to the 13,151 district-matched NORC high schools. As before, we used the alpha-matching FORTRAN program, which in this case compared the alphanumeric variables of school name and city name within each state. The aforementioned problems of non-equivalent character strings were resolved as before. We performed several runs, using different yized character strings for school name (city name was used only on the last run). Finally, NORC employed the hand matching procedures for the still unmatched high schools. The result here was 12,815 matched schools, 1,333 unmatched NCES-CDD schools, and 336 unmatched OCR-coded NORC schools (see table 2.6.).

The last step used the 1,333 unmatched NCES-CCD schools and the 1,266 district unmatched NCES-CCD schools. These, sorted by $21 p$ codes and city nämes, were manually compared to the 3,013 non-OCR-coded NORC schools. The procedure matched 1,495 schools, with 1,104 NCES-CCD high schools remaining unmatched (see table 2.7.).

Tabie 2.6.--NCES-CCD/NORC public school match-step 1

		NORC	
Schools matched by district- $/$ /	$\ldots \ldots \ldots \ldots$	13,151	
Matched schools $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	12,815	14,148	
Unmatched schools $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	336	12,815	
I/ See table 2.5.		1,333	

Table 2.7. NCES-CCD/NORC public school match-step 2

NORC
NCES-CCD

Rematning unmatched schools	3,0131/	2,599 ${ }^{\text {/ }}$
Matched schools	1,495	1,495
Unmatched schools	1,518	1,104 ${ }^{\text {/ }}$

1/ See table 2.5.

2/ Equals the 1,333 NCES-CCD unmatched schools in table 2.6. plus the 1,266 NCES-CCD unmatched schools in table 2.5.

3/ These 1,104 schools were added to the 18,239 schools (see table 2.5.) to form the 19,343 schools in the revised NORC universe file.

2.3.3.2.3 Second Stage NORC Public School Universe File

To update our preliminary public school universe file, the 1,104 unmatched NCES-CCD schools underwent file modifications (to fit the final universe tape format). These then were merged with the 18,239 public high schools in the second-stage NORC public high school universe file.

All CIC schools without OCR codes that were matched with NCES-CCD schools received the NCES-CCD and/or OCR state and district codes.

2.3.4 Racial Composition/NORC Universe Match

In the now complete NORC public school universe file of $19,343 \mathrm{high}$ schools, only 12,229 schools had the OCR racial composition data necessary for stratification purposes. ${ }^{1}$ To update the remaining 7,114 uncoded schools, NORC used several sources of data.

First, we employed the OCR's 1972 public high school computer file and used a computer program similar to the one used in matching the 1976 OCR file with the CIC schools (see section 2.3 .1). This resulted in 3,250 schools obtaining racial composition data.

The 1970 Census Data Book provided the racial data for an additional 1,092 schools, while the 1977 County and City Data Book provided data for 2,089 more schools. Of the latter group, 1,349 schools received city level data, 629 received county level data, and 111 received city or county level data. Finally, of the $\delta 83 \mathrm{schools}$ that still did not have racial composition data, 677 received the information by internally matching them with other racially coded schools in the NORC file via OCR district and $21 p$ code matching. The remaining six uncoded schools were assumed to be 100 percent White (see table 2.8.).

1 we discovered that 3,074 had fall ty dat. Facial data,
 leta.

Table 2.8.--The racial composition/second stage NORC public school universe match

Table 2.9.-The DRC income/second stage NORC public school universe match

Schools	Number
Total public schools	19,343
Total schools with income data	18,596
First match ${ }^{\text {/ }}$	17,843
Second match	753
Total schools without incime data	747
First match ${ }^{\text {/ }}$	396
Second match	35!

1/ See table 2.4.

2.4 Matching Procedures: Private Schools

2.4.1 NCES/CIC Universe Match

To check the comprehensiveness of the CIC's Catholic and private school universe file, NORC checked the CIC file against the National Center of Education's non-public school survey computer file.

2.4.1.1 File Preparation

The NCES file contained 17,307 NCES non-public schools; NORC eliminated 11,346 schnols which did not have a tenth or twelfth grade, using a special FILEBOL program. We sorted the 5,961 NCES high schools and the 5,095 CIC non-public schools by state and telephone numbers in ascending order.

2.4.1.2 Matching Procedures

Since the CIC and NCES schools, lacked a common ID number, matching could only be accomplished by the aforementioned FORTRAN alpha-matching program's scanning and comparison of school zip codes, telephone numbers, name, address and city name. As before, when we matched the CIC public and OCR public school files, the matching proceded state by state with different runs comparing different character strings. The problems of non-equivalent character strings for the same schools were also resolved as before.

2.4.1.3 Preliminary NORC Private School Universe

This matching procedure resulted in 4,294 matched schools, with 801 CIC schools and 1,667 NCES schools left unmatched (see table 2.10.). Thus the preliminary NORC non-public school file contained a total of 6,762 schools (see table 2.11.).

Table 2.10.--NCES/CIC non-public school universe match

Schools	NCES file	CIC file
Total schools	5,961	5,095
Matched schools	4,294	4,294
Unmatched schools	1,667	801

Table 2.11.--Preliminary NORC private school universe file

Schools Number

Total schools 6,762
Matched schools 4,294
Unmatched NCES schools 1,667
Unmatched CIC schools 801

2.4.2 DRC Income File/NORC Universe Match

Using the DRC Income data file, 6,397 of the total 6,762 non-public schools received income data via the zip code linking procedure described above. The remaining 365 schools did not have the income data (see table 2.12.).

Table 2.12.--DRC income file/NORC private school universe match

Schools	Number
Total schools ${ }^{\text {/ }}$.	6,762
Schools with income data	6,397
Schools without income data	365
1/ See table 2.11.	*

2.5 NORC Public School/Non-Public School Universe Attachment

To create a final universe tape of all high schools, public and non-public, NORC attached its non-public school universe file of 6,762 schools (see section 2.4) to its public school universe file of 19,343 schools (see section 2.3). Therefore, the preliminary NORC high school universe contained 26,095 high schools.

In preparing this final tape for sample design and selection, we had to attach the U.S. Census Region Code and the U.S. Census Urbanization Code to each schools' record. Attachment occurred partially by hand and partially via a special SELECT computer program.

2.6 NORC School Universe File Cleaning

To prepare the NORC high school universe file for sample design and selection, it was necessary to subject the file to a detailed "cleaning"
process. This primarily involved examining the file to insure that each school had the descriptive data required for stratification purposes and that the data were prope:ly coded. (In what follows we will discuss each stratification variable individually, even though it was more of an involved interactive process. See table 2.13. for a summary.)

> Table 2.13.--Cleaning of NORC high school universe file

Schools	Number
Schools in preliminary file	26,095
Duplicate schoois	1,058
Continuation schools	311
Schools without 10th or 12th grades	1
Schools in final universe file	24,725

2.6.1 Duplicate Records

A closer examination of the universe file revealed that 1,058 schools were duplicates of other schools on the file. We therefore deleted these duplicates from the file, leaving 25,037 schools in the universe file.

2.6.2 Enrollment Data

There were 112 schools with missing enrollment data. The data were subsequently added to these records, via a special SELECT nrogram.

2.6.3 "Continuation" Schools

NORC decided that those schools which were designated as "continuation" schools be deleted from the sampling frame since they were not actually high schools. The elimination of these 311 schools left 24,726 schools in the universe file.

2.6.4 Grade/Grade Spans

By far the most problematic set of data was the various codes that described the distribution of grades within each school. In general terms, there were about 2,000 schools which had inconsistent or missing values in two or three of the following data fields: grade span; 10th/12th grade code; and/or number of grades. A few of the problems were caused by the codes being in the wrong data fields on the universe file; in these cases a SELECT program merely moved the data to its proper location.

The remaining cases involved actual contradictions in the data. After lengthy discussions, NORC decided to use the value for the number of grades in a school as the true description of grade distribution. Thus using a SELECT program, we changed the grade span codes to reflect the number of grades. In the process, we had to balance any changes in grade span against the 10th/12th grade combination code. Since we determined that the number of grades and the combination codes were equally reliable, the changes in the grade span reflected the values in the other two variables.

Finally, we discovered one school that had neither a tenth nor a twelfth grade; this school was deleted from the universe file, leaving 24,725 schools in the high school universe file.

2.6.5 State Codes

Nine of the schools had inconsistent numeric and alpha CIC state codes. Since the numeric code indicated the geographical location of the school (and not the mailing address), we changed the alpha codes to reflect the numeric state codes.

2.6.6 Ceffaus Codes

Approximately 100 schools had missing or zero-filled values for the Census Region Code and/or the Census Urbanization Code. Once flagged, we altered the data for these schools to reflect the actual regional and urban locations of the schools.

2.6.7 Racial Composition Data

After examining the universe file, we discovered that the racial composition data from the 1972 OCR universe file had a different ordering of racial. categories than the 1976 OCR file. We therefore altered the records of the 3,211 such schools (using a SELECT program) to match that of the remaining schools with racial composition data. The records of an additional 16 NCES-CCD schools which had received their racial data from CIC schools matched by OCR district codes or $2 i p$ codes were altered in the same manner.

2.6.8 Black and Hispanic Catholic Schools

For stratification purposes, we needed to identify the predominately Black and Hispanic Catholic schools. A SELECT program placed an indicator of this in these 129 schools' data records.

2.7 Final NORC High School Universe File

The completed NORC aigh School Universe File contained a total of 24,725 schools, representing approximately $8,104,383$ sophomores and seniors. Of these, 18,027 were public schools, and 6,698 were private schools, representing approximately $7,340,198$ public school and 674,185 private school sophomores and seniors.

The composition of the universe file is detailed in figure 2.1. Note, however, that many of the schools lacked information on one or more of the variables 1isted. Of particular importance were the over 1,000 schools with no community income level data. In addition, information such as school sex composition, religious affiliation, and CIC or NCES school type was applicable to only a portion of the schools in the frame.

Fig. 2.1.--Contents of NORC high school universe file

IDENTIFICATION CODES

OCR State, District \& School OE Codes
CIC State, County, District \& School Codes
NCES-CCD School Code
School Name, Address, City, \& Zip Code
STHOOL SIZE
:otal Enrollment
jrade Span (Low \& HIgh)
10th/12th Grade Combination:
10th 12th Grades
12th Grade Only
10th Grade Only
Number of Grades
RACIAL DATA.
Percent American Indian
Percent Oriental
Percent Black
Percent White
Percent Hispanic
COMMUNITY INCOME
Number of Households
Median Family Income
Percent Households with Income > \$25,000
Percent Households with Income > $\$ 15,000$
Percent Households with Income > \$10,000

SCHOOL TYPE
CIC School Type:
Regular Public School
Catholic School
Private School
Area Vocational School
Regional/County Center
CIC Vocational Code:
Vocátional Classes in
Regular School
Vocational School
Other
CIC Special Education Code:
Regular School with Special Education Classes
Special Education School Others
NCES School Type:
Day Onily
Resident Only
Mixed
Elementary
Middle
Secondary
Elementary and Secondary
Special Education
Vocational/Technical
Alternative

Fig. 2.1.--Contents of NORC high school universe file (continued)

```
CEnSus Codes
    Region:
    New England
    Middle Atlantic
    South Atlantic
    E. South Central
    W. South Central
    E. North Central
    W. North Central
    Mountain
    Pacific
U\jbanization Level:
    Urban
    Suburban
    Rural
```

OTHER
Student Sex:
Boys Only
Girls Only
Co-ed
Religious Affiliation:
Baptist
Calvinist
Eastern Orthodox
Episcopalian
Friends
Jewish
Lutheran
Methodist
Presbyterian
Roman Catholic
Seventh Day Adventist Other
None

Tables 2.14 through 2.18 describe the final NORC high school universe. Each variable considered (egg., census region, or level of urbanization) is crosstabulated with five school types: Non-Alternative, Non-Hispanic public schools; Non-Alternative, Hispanic Public schools; Alternative Public schools; Private, Non-Catholic schools; and Catholic schools. These five school types are fore fully described in chapter $3 .$.

Each table not only shows the number of schools within each cell, but also shows the estimated number of tenth and twelfth grade students represented by those schools. For example, in table 2.14, there are 2,811 Non-Alternative, Non-Hispanic Public schools in the Northeast, containing approximately $1,581,326$. students. The number in the parentheses that are next to the number of schools or students indicates the column percentage of the schools or students in that cell. That is, of all the Non-Alternative, Non-Hispanic Public schools in .he NORC universe, 16.3 percent are located in the Northeast. The number in the parentheses below this percentage indicate the percentage of schools or students in that cell relative to the whole NORC universe. That is, of all the schools in the universe, 11.4° percent are Non-Alternative, Non-Hispanic Public schools in the Northeast.

Finally, the tables also show the row, column, and overall totals of schools and students. The numbers in the parentheses indicate the percentage of row or column totals relative to the overall totals. That is, the 4,707 schools and the $1,867,872$ students in the Northeast represent 19.0 and 23.3 percent of the total number of schools and students, respectively. Also the 17,223 schools and $7,015,986$ students in Non-Alternativè, Non-Hispanic Public schools represent 69.7 and 87 per cent of the total number of schools and students, respectively.

Table 2.14.--NORC school universe of schools and students by Census region and school type

Region	Non-alternative non-Hispanic public	Non-altarastive Hispanic public	Alternstive public		Private non-Cetholic		Catholic		Total
Northesst: $\quad 18$, 611 (16.3)									
-Schools	2,811 (16.3)	18 (3.8)	62	(18.6)	1,154	(23.9)	662	(35.3)	4,707 (19.0)
	(11.4)	(0.1)		(0.3)		(4.8)		$(2,7)$	
Students	1,581,326 (23.0)	17,443 (7.4)	38,786	(43.0)	61,859	(27.0)	168,458	(38.0)	1,867,872 (23.3)
	(19.7)	(0.0)		(0.5)		(0.8)		(2.1)	
South: ${ }^{\text {a }}$ (${ }^{\text {a }}$									
	5,960 (34.6)	239 (50.7)	88	(26.4)	1,806	(37.4)	380	(20.3)	8,473 (34.0)
Students	2,186,507 (31.0)	114,805 (48.0)		(0.7)		(7.3)		(1.5)	
	(27.3)	(1.4)		(0.0)		(2.0)		$\begin{array}{r} 10.0) \\ (0.9) \end{array}$	486,498 (31.0)
North Central: Schools									
	5,816 (33.8) (23.5)	$11 \begin{array}{r}(2.3) \\ (0.0)\end{array}$	98	$\begin{array}{r} (29.4) \\ (0.4) \end{array}$	862	$\begin{array}{r} (17.9) \\ (3.5) \end{array}$	603	$\begin{array}{r} (32.2) \\ (2.4) \end{array}$	7,390 (29.9)
Students	2,026,350 (29.0)	1,860 (0.8)	22,762	(25.0)	41,813	(18.0)	148,948	(34.0)	2,241,733 (27.7)
	(25.3)	(0.0)		(0.3)		$(0,5)$		(1.9)	
West:									
Schools	2,636 (15.3)	203 (43.1)	85	(25.5)	1,003	(20.8)	228	(12.2)	4,155 (16.8)
	\%(10.7)	. (0.8)		(0.3)		(4.1)		(1.0)	
Students	1,221,803 (17.0)	100,784 ${ }^{\circ}(42.9)$	9,896	(11.0)	39,352	(15.0)	51,445	(12.0)	1,418,280 (17.5)
	(4.3)	(1.3)		(0.0)		(0.5)		(6.4)	
Totsl:									
Schools	17,223 (69.7)	471 (1.9)	333	(1.4)	4,825	(19.5)	1,873	(7.6)	24,725(100.0)
Students	7,015,986 (87.5)	234,892 (2.9)	89,320	(1.1)	233,347	(2.9)	440,838	(5.5)	8,014,383(100.0)

Tabla 2.15. . NOAC achool univaran of schools and atudants by Cansus division and school type

Table 2. 16.-NORC achool univerae of achools and atudenta by level of urbanization snd school type

Table 2.17.--NOAC school universe of schools and students by perceutage black and school type

Table 2.18. - -NORC school univeras of achools and atudenta by aize of average combined aphomore and senior enrollment and school type $\underline{1 /}$

1) Table entries for student totala are the am of 10 th and 12 th grade entollmenta. Gradea 9 and 11 sre onitted from these totals. 50

CHAPTER 3

SCHOOL UNIVERSE STRATIFICATION

The next phase of the High School and Beyond sample involved stratifying the NORC High School Universe File. We sorted the sample frame in such a way as to create groups of schools, called strata. Each stratum contained schools which were relatively similar in terms of certain variables deemed relevant to the survey's objectives. The actual selection of schools then occurred independently within each stratum.

Stratification techniques served several study-specific design objectives. First, stratification was used to decrease the variance of sample estimates by reducing the within-stratum component of the overall variance. In addition, policy-related issues required that certain unique subpopulations (e.g., Alternative schools, high ability Black Catholic students) be sufficiently represented to allow for separate analyses in both phases of the study. Stratification permitted us to set up such subpopulations as separate "domains," forming their own "special" strata which could be oversampled to achieve the desired sample size, without invalidating the national representativeness of the sample.

Another consideration involved being able to compare the present study's data to the data from the 1972 survey. This required at the least, a comparable sample of students. Since the earlier study also used stratification, one means of attaining comparability would be to use stratification variables similar to those of the earlier study. Finally, the study design required that each state be given the opportunity to "augment" the national sample for its own purposes. This could be achieved via stratification.

3.1 Stratification Design

NORC's sample design for the High School and Beyond Survey called for a two stage stratified cluster sample. The first stage involved the selection of 1,122 high schools from a stratified list of eligible high schools, with the, selection process proceding independently within each of the strata. The second stage then called for the selection of an equal number of students from each-selected school.

The first step, after constructing the sample frame, involved stratifying the NORC High School Universe File. To remain faithful to the stratification design of the 1972 study, NORC had initially proposed using the following seven stratification variables in the following order: 1) Type of Control (public, Catholic, and non-Catholic private); 2) Geographic Region (nine Census Divisions); 3) Raciai and Ethnic composition (various combinations of White, Black, and Hispanic enrollment ratios); 4) Degree of Urbanization (urban central cịty, suburban, and rural); 5) Income Level of the Comminity; 6) Proximity to a Cellege; and 7) Enrollment Size. These variables roughly paralled those used In the earlier study.

However, NORC later decided that the sixth stratification variable, proximity to a college or university, and the fourth variable; degree of urbanization, were so similar that we were able to drop the former variable from our stratification scheme without any loss of information. Also, as mentioned in chapter 2, there were several schools that lacked information about the income level of the schools' comunities. Thus we decided not to use that variable as well. Finally, as we would later discover, the five remaining variables did not allow for a useful stratification of the private schools. We therefore added a male and female composition variable to the stratification of the private schools only.

The overall design of the stratification process involved creating three major strata by separating the public schools, the private non-Catholic schools, and the private Catholic schools from each other. We then further subdivided each of these three control categories into successively smaller strata by separating the schools along the remaining stratification variables, in the aforementioned order. If via this procedure any of the substrata became relatively small, we retraced the process and recombined the substrata along revised variable categories.

Initially, NORC had planned to create approximately 500 substrata of equal size, as measured by the total of the schools' tenth and twelfth grade enrollments. We would then be able to select two schools from each substratum, for a total of 1,000 sampled schools, each selection made with probabilities proportional to the size of the school's enrollment. This, coupled with the selection of an equal number of students from each school, would have created approximately equal sty pent probabilities of selection. In addition, using paired selection variance computational techniques, we would have an unbiased estimate of the sample astipators' precision.

Several factors prevented NORC from achieving these objectives. The first was the matter of each state's option of requesting a within-state representative sample. Such an augmentation sample involved the possibility of selecting an additional number of schools from the augmenting state so that all of the schools Selected from that state were the whole of a within-state representative sample with an acceptable estimation precision. Second, the study's objectives required that we have enough sample:cases to separately analyze several key but rare type of schools and students. Third, the grossly unequal enrollment size of the schools made it virtually impossible to create meaningful substrata of roughly equal size while maintaining the two selected schools per substrata criterion.

As a result, NORC modified its intended sample design to accomodate these problems. After dividing the schools in the universe along the two control categories of public and non-public schools, we separated those schools for which there were specific analysis nec, from the rest. Then, where possible, we further subdivided the schools within each of the above categories along regional lines. These subgroups thus formed the "explicit" strata, or "superstrata." Within each superstratum, we then further "substratified" the schools along the remaining stratification variables, whenever possible. These groups formed the "subst: .ta" within each superstratum. Each superstratum had its own combination of substrata, depending upon the internal distribution of the stratifying variables and the size of the superstratum. A systematic selection of sch~o's (with probabilities proportional to enrollment size) was then carried out independently within each superstratum. Oversampling to achieve desired sampie sizes was thereby possible.

We also intended to design the stratification in a manner enabling us to assume that each pair of selected schools came from an "implicit" stratum. Thus we had the option of 'úsing paired selection variance computations. (As it turned \quad, this method of variance computations proved infeasible, due to the large number of ineligible schools in the sample. See sections 4.4 and 7 for a more detailed explanation).

In wi. .t follows, we will describe the stratification of each of the two control categories: Fullic high schculs; and Private high schools.

3.2 Public School Stratification

Within the subclass of public high schools, there is considerable policyrelated and scholarly interest in two types of schools and students. The first interest is in Hispanic, particularly Cuban, students; the second is in "Alternative" schools. Thus to insure sufficient representation of these two groups, we created three subgroups of public high schools: 1) Non-Alternative, Non-Hispanic schools (see section 3.2.1); 2) Non-Alternative, Hispanic schools (section 3.2.2); and 3) Alternative schools (section 3.2.3).

3.2.1 Non-Alternative/Non-Hispanic Public School Stratjfication

3.2.1.1 Explicit Strata ("Superstrata")/State Augmentation

We first stratified the Non-Alternative, Non-Hispanic Public schools ccording to the nine Census Divisions (New England, Mid-Atlantic, South Atlantic, East South Central, West South Central, East North Central, Lest North Central, Mountain, and Pacific). Of imediate impact here were the augmentation options offered to individual.states. As designed, the national sample could not provide a within-state representative sample for each state. Therefore, each state was given the option to increase its expected sample of public schools (under proportional allocation among strata) in order to create a representative sample for the state. One of the types of augmentation, known as "piggybacking," involved drawing additional schools from the augmenting state so that the
within-state sample would be representative for both the state and the ndtion. 1
If the states chose to adopt the piggybacking option, we had to alter the national sample design to reflect this. Of primary concern was the minimum sample size required within eack. state to 1) produce the within-state representative school sample, 2) produce an adequate precision for within-state sample estimates, 3) satisfy the statistical requirement of a normal distribution of possible sample estimates, and 4) provide sufficient "randomization" for the assumptions of the central limit theorem to hold. While NORC's technical opinion was that a minimum of 80 primary sampling units (schools) would satisfy these conditions, we allowed each state the option of achieving a minimum statistical validity with 50 selected schools from that state (schools expected from a proportional sample allocation without augmentation, plus the schools added via augmentation). We did, however, recommend that at least 60 schools be in the total augmented state sample. To this end, we prepared tables showing the expected levels of precision (standard errors) for sample sizes ranging from 50 to 100 , allowing the state to chose its own level of precision relative to the increased costs of adding more schools.

Using 1976 and 1977 NCES data, we•calculated the expected allocations of sampled public schools by state, assuming a total sample size of 932 public schools (excluding the 68 private schools) with allocations proportional to each

[^2]state's population of public high school students. Five states (New York, Pennsylvania, Texas, Ohio, and California) would have had at least the minimum number of schools for an adequate state sample without augmentation. These states became their own superstrata so that the selected schools would represent the state as well as being part of the nationał sample. Illinois, however, selected the piggyback option and required oversampling; Illinois therefore also formed its own superstratum. Therefore, all public schools became stratified into 15 "superstrata" (or explicit strata) - the nine Census Divisions plus the six individual states (see table 3.1.).

3.2.1.2 Subscratification

For the 15 Non-Alternative, Non-Hispanic Public school superstrata, we first sorted the schools in each separate superstratum into the following six substrata: high-Black rural; high-Black suburban; high-Black urban; low-Black rural, low-Black suburban; and low-Black urban, setting the cutoff percentile for low-Black/high Black at 25% Black. The urbanization coding was as follows: urban=central city; suburban*no tral city part of SMSA; and rural=non-SMSA. If, however, any of the six substrata became too small to allow us to draw two selections from a substratum, it was collapsed into an adjoining substrata. Yithin each substratum, we ordered the schools according to their total tench and twelfth grade enrollment. From substrata to substrata, this ordering was "back-to-back" (i.e., low to high in the first substrata, high to low in the second substrata, low to high in the third substrata, etc.). (See chapter 4 for a detailed discussion of the selection procedure.)

Table 3.1.--Non-alternative, non-Hispanic public school stratification

Stratum \#
Superstratum
Substratum
Enrollment

1

New England

New York

New Jersey (Mid-Atlantic minus NY. and PA.)

Pennsylvania

South Atlantic

East South Central

West South Central (minus Texas)

Table 3.1.-Non-alternative, non-Hispanic public school stratification (continued)

Stratum \#
Superstratum
Substratum
Enrollment

$$
\text { (1) } 1
$$

After the actual substratification was completed, only the South Atlantic and the East South Central superstrata could support the six substrata sorting procedure. In every other superstratum, at least one class had to be incorporated Into an adjacent class (see table 3.1.).

In the New England, Mountain, and Pacific strata, we had only the three urbanization level substrata. In the New York, Pennsylvania, Ohio, East North Central, Illinois, and West North Central strata, all high-Black schools were left undifferentiated along urbanization lines, while low-Black schools were in separate urban, suburban, and rural substrata. In New Jersey, high -Black rural and suburban substrata were collapsed, as were the low- Black urban and suburban substrata. In the West South Central strata, the high-Black suburban and highBlack urban glasses were combined, while in Texas and California the high-Black rural and high-Black suburban classes were combined. Thus there were 64 total cells in the Non-Alternative, Non-Hispanic Public school superstrata.

3.2.2 Non-Alternative/Hispanic Public School Stratification

' Another source of initial sample design modification involved an augmentation of the original study design to allow for a more comprehensive investigation and analysis of Hispanic students in United States' high schools. This required a sufficient sample of students from each major U.S. Hispanic group: Mexican-Americans; Puerto Ricans; and Cuban-Americans; as well as the high ability subgroup of each. At the same time, NORC wished to integrate this Hispanic supplement into the broader study. These two objectives required that approximately
20% of the national sample be of Hispanic origin, with at least 500 CubanAmerican students in each grade cohort. We could not maintain the integrity of an equal probability sample however, while simultaneously fulfilling those numerical requirements. Thus, students in certain Hispanic groups would have to be oversampled and correspondingly weighted. We achieved the required subgroup oversampling by selecting high proportion Hispanic schools with a probebility which was an increasing function of the proportion of Hispanic students in the student body. The degree to which each oversampled subgroups' sample could be incorporated effectively into the national sample varied among the Hispanic subgroups. We estimated that only the Cuban-American sample could not be incorporated, since it would be primarily a Dade County, Florida sample (due to the disproportionate geographical allocation and proportionately small number of Cuban-Americans). Mexican-Americans and Puerto Ricans would require small and moderately high weights respectively. For the latter subgroup, we hoped to increase sampling efficiency by increasing the number of schools in which Puerto Rican students could be found.

Overall, NORC proposed to increase the proposed total sample size of 1,000 schools by no more than 100 , with about 50% being predominantly Puerto Rican schools, 35% being Cuban schools, and the remainder being Mexican-American schools. To implement this we first separated all public schools in our public school universe which had an Hispanic enrollment of greater than 35% from those which had an Hispanic enrollment of less than 35%. In order to resolve the forementioned caveats regarding the Cuban-Americans, we further separated those Hispanic schools with predominantly Cuban-American enrollments from the rest of the Hispanic schools. These Cuban schools were defined as schools in which 20% or more of the students were identified as Cuban-Americans.

3.2.2.1 Non-Cuban/Hispanic Public School Stratification 3.2.2.1.1 Explicit Stratification

Following the explicit stratification scheme used for Non-Alternative, NonHispanic Public schools (see section 3.2 .1), we stratified the Non-Cuban Hispanic Public schools along the same 15 explicit Census Division/state lines. The relatively small number of Hispanic schools forced us to collapse these 15 strata into five "superstrata" (see table 3.2.).

3.2.2.1.2 Substratification

Again, following the stratification design of the Non-Alternative, NonHispanic schools, we substratified these five superstrata along urbanization level and enrollment lines. (Stratification by race was not feasible.) However unilateral three-way urbanization level stratification became feasible only for the West South Central and Pacific superstrata. The small size of the urbanization substrata in the remaining Non-Cuban Hispanic superstrata (preventing the possible salection of two schools per implicit strata) required us to collapse these substrata into each other. Thus, no stratification by urbanization could be achieved in the Northeast and North Central, or South Atlantic strata, while the Mountain stratum was substratified along urban/suburban and rural lines.

Within these rather limited substrata, we again ordered the schools (back-to-back among substrata within superstrata) according to the schools' total tenth and twelfth grade enrollment.

Stratum \#	Superstratum		Enrollment
16	Nurtheast \& North Central	NONE	Ascending
17	South Atlantic	LONE	Ascending
18	West South Central	Urban Suburban Rural	Ascending Descending Ascending
19	Mountain	ürban \& Suburban Rural	Ascending Descending
20	Pacific	Urban Suburban Rural	Ascending Descending Ascending

21 Cuban Public NONE

3.2.2.2 Cuban Public School Stratification

This separate special stratum of Cuban Public schools allowed for the separate analysis of Cuban students in public high schools. We were able to Identify twenty schools with a Cuban enrollment of 20% or more. As it turned out, five of these schools were in New Jersey, 14 were in Florida, and one was in California. At that time, we were unable to determine the degree to which these schools were representative of the U.S. Cuban population; this would have to await the actual data collection to see what fraction of Cuban students in the United States were ir these schools.

Sinçe our design required a sufficient number of students for separate analysis, we did not internally stratify or order these schools in any particular way; our aim was to use all 20^{\prime} of the schools in the sample. The Cuban sample frame was designated as Stratum \#21.

3.2.3 Alternative Public School Stratification

One of the special studies requested in the RFP involved a separate sample of "Alternative" Public high schools in order to study the effects of such an education on the students attending tham. We defined an Alternative high school as one in which a significant portion of a student's time is spent in non-classroom activities. In order to draw the sample, we had three options: 1) use whatever Alternative schools were naturally selected in the national sample; 2) draw a special supplementary sample and add it to whatever Alternative schools were naturally selected; and 3) create a special strata of the Alternative schools in our universe, oversampling it to achieve a large enough sample for separate analysis.

Each option had its drawbacks. The first would most likely achieve a sample of 10 to 20 schools, too small for statistical considerations. The
second either would increase the costs or reduce the basic sample size. The third would create a non-self-weighting segment of the national sample.

The first option prevented separate analys is of Alternative schools and was automatically unfeasible. The second option, if the overall sample size was reduced, left open the possibility of undersampling Hispanic students in the student selection stage. Therefore, we chose the third option of making Alternative schools a separate special strata, oversampled to achieve the minimum of 50 schocls. Thus we would-later have the further option of either incorporating these 50 schools into the national sample with low weights or taking a subsample (proportionate to the population size of the stratum) of these 50 schools for inclusion into the national sample.

Since we could identify only 333 Alternative schools in our universe, we could not feasibly divide the schools into explicit geographical strata (as we did with the rest of the public schools) and still retain the possibility of making two selections per stratum. We therefore created substrata (within the Alternative school superstratum) along the 15 geographical divisions; those too small for our purposes were combined with others. Thus, we ended up with 11 regional substrata (see table 3.3.). Further substratification along urbanization and racial lines was possible in only three geographical substrata. In New York and the East North Central region, substra¿a of urban and suburban/rural were created; in the South Atlantic, low-Black, high-Black substrata were formed. Finally, the schools in each of these 14 cells were sorted by tenth and twelfth grade enrollments, using the back-to-back method.

This superstratum of Public Alternative schools was designated as Stratum \#22.

Table 3.3.--Alternative public school stratification
Stratum \# Superstratum

Substratum I:. Substratum II: region race/urbanization

Enrollment

22

Alcernative	New England	NONE	Ascending
	New York	Ürban Suburban \& Kural	Descending Ascending
	New Jersey	NONE	Descending
	Pennsylvania	NUNE	Ascending
	South Atlantic	$\begin{aligned} & \text { Low-Black } \\ & \text { High-Black } \end{aligned}$	Descending Ascending
	South Central	\ NONE	Descending
	East North Central	Urban uban 幺 Rural	Ascending Descending
	Illinois	NONE	Ascending
	West North Central	IVONE	Descending
	Mountain	NONE	Ascending .
	Facific	NONE	Descending

3.3 Private School Stratification Design

To stratify the universe of Private schools, NORC first separated the Elite schools from the remainder of the Private schools. The latter set of schools was divided into four categories: Non-Catholic schools; Non-Black,
 and Cuban Catholic , schools. Within each category or superstratum, we then began the successive branching process.

3.3.1 Elite School Stratification

Twelve schools comprised the Elite Private school stuperstratum (\#34). We defined the "elite" schools as the twelve private schools with the highest. percentage of graduating seniors who were National Merit Scholarship semifinalists, subject to the following acnditions: 1) the 1978 senior class had to graduate forty or more students; and 2) no more than one school could be selected from a single state. Of the twelve schools selected in this stratum, one was Catholic and the rest Non-Catholic.

3.3.2 Non-Elite, Non-Catholic Private School Stratification

The importance of Non-Catholic private schools in the overall United States educational system and in particular, California, had become significant enough to require that we have a large enough sample of them for separate analysis. Thus, the Non-Elite, Non-Catholic private schools became a separate superstratum (Stratum \#33). Here, as in the other spectral strata, further r explicit stratification by census division would yield some substrata too small for possible implementation of the two selections per stratum sample design. We were, however, able to create nine regional substrata (see table 3.4.).
iable 3.4.--.ion-Catholic private school stratificaiion

Table 3.4.--Non-Catholic private school stratification (continued)

Stratum \#	Superstratum	Substratum I region	Substratum II $/$ religious affiliation

33 (cont.)

East South Central | NON-NCES | |
| :--- | :--- |
| | Unaffiliated |
| | Baptist |
| | Calvinist |
| | Episcopalian |
| | Jewish |
| | Lutheran |
| | Methodist |
| | Presbyterian |
| | Otier |

West South Central Other
Presbyterian
Methodist
Lutheran
Episcopalian
Baptist
Unaffiliated
NON-NCES
North Central NON-NCES
Unaffiliated
Baptist
Calvinist
Episcopalian
Friends
Jewish
Lutheran
Methodist
Presbyterian
Other
West
Other
(minus California) Presbyterian
Methodist
Lutheran
Jewish
Friends
Episcopalian
Calvinist
Baptist
Unaffiliated
NON-NCES

Table 3.4.--Non-Catholic private school stratification (continued)

Stratum \#	Superstratum	Substratum I region	Substratum II ${ }^{1 /}$ religious attiliation
33 (cont.)		California	NON-NCES Unaffiliated Baptist Calvinist Episcopalian Friends Jewish Lutheran Methodist Presbyterian
34	Elite, Non-Catholic	NONE	NONE

1/ Within each substratum, enrollment size increases.
2/ Religious affiliation data was available only for the schools from the NCES private school file.

Within each regional substrata, we ordered the schools according to religious affiliation on a back-to-back basis. Within each affiliation group, the schools were ordered according to their total tenth and twelfth grade enrollment, from the smallest to the largest.

3.3.3 Catholic - Private School Stratification

The final step of stratification involved the Catholic schools. To allow for separate analyses of predominantly Cuban Catholic schools, and Catholic schools with a high proportion (25\%) Blacks and Hispanics, we separated the latter two types of Catholic schools from the remaining Catholic schools, creating three separate superstrata.

3.3.3.1 Non-Black, Non-Hispanic Catholic School Stratification

Within our Non-Black, Non-Hispanic Catholic school superstratum (Stratum \#35), we first sorted the schools into the 11 regional substrata (see table 3.5.). Then, wherever possible, we hoped to control for the sex composition of the schools. We attempted stratification by four classifications: all boys' schools, all girls' schools, coed schools, and non-NCES schools (which lacked information on school enrollment by sex). With the exceptions of New York, Pennsylvania, and the West, this substratification could not occur within the limits of our sample design. For those three regions, we could only create two substrata by sex within region: coed schools; and all other schools.
α
Finally, within each of these fourteen substrata, the schools were ordered on a back-to-back basis, tenth and twelfth grade enrollment size alternately increasing and decreasing (see table 3.5.).

Table 3.5.--Catholic school stratification

Stratum \#	Superstratum	Substratum I: region	Substratum II sex	Enrollment
35	Non-black, NonHispanic Catiolic			
		New England	NOPE ${ }^{\text {- }}$	Ascending
		New York	ivon NCES, boys only, girls only Coed	Desćénding Ascending
		New Jersey	NONE	Descending
		Pennsylvania	Non NCES, boys only, girls only Coed	Ascending Descending
		Souch Atlantic	NONE	Ascending
		South Central	NONE	Descending
		Onio	NONE	Ascending
		East North Central	NONE	Descending
		Illinois	none	Ascending
		West Norch Central	NONE	Descending
Q		West	Non NCES, boys only, girls only Coed	Ascending Descending
36	Non-Cuban, Black/ Hispanic Catholic	Nortineast	Non NCES, girls only Coed, boys only	Ascending Descending
		South	NONE	Ascending
		East North Central	NONE	Descending
		Iliinois	Non NCES other	Ascending Descending
		West	Non JCES, girls on $\perp y$ boys only Coed	Ascending Descending Ascending
37	Cuban Catholic	New Jersey	NONE	Ascending
		Fiorida	$\begin{aligned} & \text { Boys only, girls only } \\ & \text { Coed } \end{aligned}$	Descending Ascending

3.3.3.2. Black/Hispanic Catholic School Stratification

All Catholic schools with an estimated high proportion (25\%) of Black and Non-Cuban Hispanic students formed a separate Black/Hispanic Catholic school superstratum (Stratum \#36).

Within thi, , uperstrata, we were able to form five regional substrata (see table 3.5.). Substratification continued along school sex composition lines: coed; girls only; boys only; and non-NCES. Again, not all of the regions permitted this stratification, so this only occurred where and to the extent it was feasible (see table 3.5.).

Finally, we again ordered each of these nine substrata on a back-to-back basis according to the total tenth and twelfth grade enrollment, alternately increasing and decreasing.

3.3.3.3. Cuban Catholic School Stratification

We created a separate superstratum (Stratum \#37) of the 14 Catholic schools where we could identify 20 percent or more of the students as Cuban. Substratification occurred first along state lines - New Jersey and Florida where these schools were located, and then by single sex schools versus coed schools in Florida only. These three substrata were internally ordered by total tenth and twelfth grade enrollment on a back-to-back basis, alternately increasing and decreasing (see table 3.5.).

3.4 Washington State Augmentation Stratification

The State of Washington also opted to augment its part of the national sample. Rather than use the piggybacking method as described above for Illinois, Washington State decided to draw an "independent" state sample.

With this method, a separate in-state representative sample of schools would be drawn from a universe that excluded those state schools selected in the national sample.

To implement this for Washington State, NORC took all of the public high schools (including Alterrative Public high schools) in the state and excluded the 12 schools selected in the national sample and the three schools selected as replacements for out-of-scope schools. We attempted to stratify this universe in a manner comparable to the stratification scheme of the other puvlic school strata. However, a close examination of the Washington State universe showed this to be impossible. Therefore, we only could substratify the schools along the three urbanization lines: urban, suburban, and rural. As before, each school within the substrata was ordered according to total tenth and twelfth grade enrollment sizes on a back-to-back basis (see table 3.6.).

The Washington State superstratum was designated as Stratum $\# 38$.

Table 3.6.--Washington state augmentation stratification

Superstratum

Washington State (\#38)

Urban	Ascending
Suburban	Descending
Rural	Ascending

CHAPTER 4

SCHOOL SAMPLE SELECTION

4.1 Primary Selection

The first stage of the HS \& B sample design called for the selection of schools from a stratified list, with selections made proportional to the size of the school's average tenth and twelfth grade enrollment. We independently selected schools from each superstratum, after allocating a specific proportion of the total sample to each of the six major school types Thus we allowed for the disproportionate oversampling of certain key school types, while at the same time developing an overall sample capable of national projections for the sample estimates. We also selected the initial school sample in such a way as to allow for the use of paired selection variance estimates; i.e., each pair of selected schools could, if necessary, be considered as coming from a single implicit stratum of relatively similar schools.

4.1.1 School Type Allocation

The selection of sample schools occurred independently within each of the six general school types: (1) Non-Hispanic Public; (2) Hispanic Public; (3) Alternative Public; (4) Black/Hispanic Catholic; (5) Other Catholic; and (6) Other Private. Within each school type, selections also occurred independently within each superstratum. While we applied the same general procedures within each school type, variations in the design resulted from the data analysis requirement that certain superstrata be disproportionately sampled.

Initially, school sample selection involved determining expected sample size for each of the six general types of schools. This was a function of the average number of students per grade for each school type and for the population, in addition to the analytical requirements of the study (i.e., the requirement of a disproportionate sample by school type).

The general formula for calculating the expected number of sample schools is:

$$
\begin{equation*}
E\left(n_{t}\right)=\left(\frac{\operatorname{MOS} t}{\operatorname{MOS}}\right) \quad(n) \tag{1}
\end{equation*}
$$

where:
$E\left(n_{t}\right)=$ expected number of sample schools for the $t^{t h}$ school type ($t=1$ to 6); $M_{t}=$ the measure of the size (the total of the average number of stucients per tenth and/or twelfth grade) summed over all schools in the $t^{\text {th }}$ school type;

MOS $=$ the measure of size for the entire population of schools;
n $\quad=$ the desired sampled size for the whole sample.
Each time we calculated an expected sample size for a school type, we subtracted the expected sample size (or desired sample size if different) and the measure of size from the population totals of the respective variables. With the new population totals, we again applied the formula to the next school type (see table 4.1).

To begin with, all of the schools in NORC's High School Universe File contained $8,318,524$ sophomores and seniors. The MCS was the average number of students per the two grades, or $4,159,262$ students. Our initial total desired sample size (n) was set at 1,000 schools out of the 24,725 total schools. Based on the purely proportional (to the MOS) sampling of schools from each type of school, we initially calculated the expected proportional allocation

Table 4.1.--Sampléallocations by school type

(A) School type	$\begin{aligned} & \text { (B) } \\ & \text { Total } \\ & \text { MOS } \end{aligned}$	$\begin{gathered} \text { (C) } \\ \text { School type }_{\text {MOS }_{t}} \end{gathered}$	(D) Proportion (C/B)	(E) Desired total sample (n)	(F) Expected sample $\left[E\left(n_{t}\right)\right]=(D * E)$	$\begin{gathered} (G) \\ \text { Desired } \\ \text { sample } \\ {\left[D\left(n_{t}\right)\right]} \end{gathered}$
Total schools	4,159,262	--	--	1,000	--	1,000
Alternative public schools		47,297	. 1137	--	11	50
Total alternative schools	4,111,965	--	--	950	--	--
Total minus private schools		340,828	. 0819	--	79 -	137 (138)
Black Catholic		17,565	. 00427	--	4	40
Catholic		203,415	. 0495	--	47	47 (48)
Private		119,848	. 0291	--	28	50
Total public schools	3,771,137	-	--	813	--	--
Non-Hispanic		3,656,884	. 9697	--	788	788
Illinois		188,037	. 0499	--	41	62
Hispanic		114,253	. 0303	--	25	125 (126)
			surmar			
	School type		Sample size			
	Al ternative		50			
	$\begin{array}{r} \text { Priva } \\ \text { Bla } \\ \text { Cat } \\ \text { Oth } \end{array}$	Catholic ic private	70		(40) (48) (50)	
	Publ Non His	spanic public nols K ic public			$\begin{aligned} & (808) \\ & \\ & (126) \end{aligned}$	
Total			1,122			

of Alternative Public schools (school type \#3) in such a sample. Using formula \#1, with MOS $_{t=3}=47,297$, the expected sample size equalled:

$$
E\left(n_{t=3}\right)=\frac{47,297}{4,159,262} \cdot 1,000=11.37 \dot{ }=11
$$

However, the analysis specifications required a desired sample size [$D\left(n_{t=3}\right)$] of 50 , thus necessitating an approximately 400 percent oversample.

Next with $n=950$ schools remaining $\left(n-D\left(n_{t=3}\right)=1,000-50\right)$ and a MOS of $4,111,965$ remaining (MOS $-\operatorname{MOS}_{t=3}=4,159,262-47,297$), we calculated the expected proportional allocations of Black/Hispanic Catholic (\#4), Other Catholic (${ }^{(\# 5)}$), and Other Private ($\# 6$) schools. With respective MOS_{t} 's of $\operatorname{MOS}_{t=4}=17,565, \operatorname{MOS}_{t=5}=203,415$ and MOS $_{t=6}=119,848$, we calculated expected sample sizes of (using formula \#1):

$$
\begin{aligned}
& E\left(n_{t=4}\right)=\frac{17,565}{4,111,965} \cdot 950=4.06 \doteq 4 ; \\
& E\left(n_{t=5}\right)=\frac{203,415}{4,111,965} \cdot 950=47.0 ; \\
& E\left(n_{t=6}\right)=\frac{119,848}{4,111,965} \cdot 950=27.69 \doteq 28,
\end{aligned}
$$

for Black/Hispanic Catholic, Other Catholic, and Other Private schools respectively.

To achieve sample sizes of approximately 40 to 50 schools, we would require some degree of oversampling. For the Black/Hispanic Catholic schools, it was decided to reduce the desired sample size here from 50 to 40 . It also was cecided to maintain the expected sample size of 47 (but rounding up to 48) for the Other Catholic schools and to sample 50 Other Private schools. Thus the desired
total private school allocation was the sum of the desired sample sizes 6
$\left[\sum_{t=4} D\left(n_{t}\right)\right]=(40+48+50)$, equalling 138 sampled private schools.
Thus with $n=813$ schools remaining $\left(n-\sum_{t=4} D\left(n_{t}\right)=950-137\right)^{1}$ and a MOS $3,771,137$ remaining (MOS $-\sum_{t=4}^{6}$ MOS $_{t}=4,111,965-340,828$), we computed the expected proportional allocations for Non-Hispanic (\#1) and Hispanic (\#2) Public schools. For the Non-Hispanic Public schools, with MOS ${ }_{t=1}=3,656,884$, we expected:

$$
E\left(n_{t=1}\right)=\frac{3,656,884}{3,771,137} \cdot 813=788.37 \doteq 788
$$

schools in the sample.
At this point, we needed to account for the state oversampling required by Illinois' piggyback augmentation. From the 788 expected Non-Hispanic Public schools, using $\operatorname{MOS}_{t=1}=3,656,884$ and the Illinois' $\operatorname{MOS}=188,037$, we calculated that we would proportionately sample 41 schools from Illinois:

$$
E\left(n_{I}\right)=\frac{188,037}{3,656,884} \quad \cdot \quad 788=40.52 \dot{ }=41
$$

Since Illinois requested a sample size of 62 , we added the 20 schools to the Non-Hispanic Public school allocation (after rounding up the 41 expected schools to 42), achieving a total sample size of 808 Non-Hispanic Public schools, with 746 (808-62) outside of Illinois.

Finally, we calculated the expected proportional allocation of Hispanic

[^3]Public schools (with MOS ${ }_{t=2}=114,253$) to be:

$$
E\left(n_{2}\right)=\frac{114,253}{3,771,137} \cdot 813=24.63 \doteq 25
$$

sampled schools. However for separate analyses we required an additional 100 schools. Thus, rounding to an even number of 26 expected schools, the desired sample size $\left[D\left(n_{t=2}\right)\right]$ for Hispanic Public schools was 126 . Overall, our total national sample size equalled 1,122 schools $\left[\begin{array}{c}6 \\ {\left[\sum_{t=1} D\left(n_{t}\right)\right]=(808+126+50+} \\ \hline\end{array}\right.$ $48+50)$).

4.1.2 Superstratum Allocations

The number of schools to be selected within each superstratum within each school type also varied from school type to school type depending on oversampling requirements. In general, however, we used a modification of formula \#l to calculate the expected superstratum sample size for each of the 27. superstrata. The number of sample selections per superstrata was equal to:

$$
\begin{equation*}
E\left(n_{h}\right)=\frac{M O S_{h}}{M_{L}} \cdot D\left(n_{t}\right) \tag{2}
\end{equation*}
$$

where:
$E\left(n_{h}\right)=$ the expected number of schools selected in the $h^{\text {th }}$ superstratum, $h=1$ to 22,33 to 37 ;

MOS $_{h}=$ the total average number of students per grade in the $h^{\text {th }}$ superstratum;

MOS $_{t}=$ the total average number of students per grade in the $t^{\text {th }}$ school type, $t=1$ to 6 ;
$D\left(n_{t}\right)=$ desired number of sample schools in the $t^{\text {th }}$ school type, as calculated in table 4.1 with formula 非1.

In each case, we rounded $E\left(n_{h}\right)$ to the nearest even number in order to get the desired sample size $\left[D\left(n_{h}\right)\right]$ to use paired selection techniques for the variance computations, if we so opted (see table 4.2.).

Within each superstratum, we used systematic sampling procedures with selections made proportional to the size of the average enrollment per grade. To avoid later weighting, we Esirst set the MOS of any school with less than 36 students per grade at 36 , which was the prójected student sample per grade within a selected school. We then cumulated this adjusted school MOS within each superstratùn.

Systematic selection requires the use of a selection internal (I_{h}) and a random start (RS_{h}) for each of the h superstrata. The first selected school is that which contains the $\mathrm{RS}_{t}^{\text {th }}$ student in the superstratum. The second school contains the $R S_{h}+I_{h}^{\text {th }}$ student, the third contains the $R S_{h}+2 I_{h}^{\text {th }}$ student, and so on. The selection interval is calculated as:

$$
\begin{equation*}
I_{h}=\frac{\operatorname{AdjMOS}_{h}^{2}}{D\left(n_{h}\right)} \tag{3}
\end{equation*}
$$

where:
$I_{h} \quad \Rightarrow$ the selection interval for the $h^{\text {th }}$ superstratum;
AdjMOS $h_{h}=$ the total average number of students per grade for the $h^{\text {th }}$ superstratum when scheols with less than 36 students per grade have their MOS adjusted to equal 36 ;
$\mathrm{D}\left(\mathrm{n}_{\mathrm{h}}\right)=$ desired number of schools to be selected in the $\mathrm{h}^{\text {th }}$ superstratum as 'calculated with formula \#2.

Any school with a MOS greater than its superstratum's calculated I_{h} was removed from the frame and selected with cèrtainty (probability of selection $=1.00$). We then calculated a new selection interval bas d on the remaining schools'

Table 4.2.--Jon-alternative, non-Hispanic public school sample

1/ Oversampled to achieve within-state representativeness.
ERIC
cumulated adjMOS and the remaining superstratum sample allocation. The random start $\left(R S_{h}\right)$ was a number (unique for each superstratum) between 1 and I_{h}, generated by a FORTRAN subroutine (see table 4.3.).

As noted before, we initially designed the school sample so as to be able to use paired selection variance computational techniques, if we so desired. The selection procedure did not use paired selection methods in an explicit fashion. However, we could assume paired selections by considering each successive pair of selected schools as coming from an implicit strata or zone of size $2 I_{h}$. With this kind of stratification, a single school could straddle two implicit strata. To maintain our desired first-stage probability of selection, we did act adjust the boundaries of the implicit strata or the adjusted MOS of the borderline schools to exactly fit the zone. We compensated for this by selecting a single random start per superstratum, rather tinan one random start per zone. This, coupled with selecting oversized schools (where AdjMOS $>I_{h}$) with certainty, prevented the multiple selection of the same school when the school straddled the zone boundary. Finally, the even-numbered allocations of schools to superstrata prevented a pair of schools (used for possible variance computations) from straddling two duperstratum.

4.1.2.1 Non-Alternative, Non-Hispanic Public School Selection

Recali that we had divided the Non-Alternative, Non-Hispanic Public schools into 15 geographical strata in which each in turn was substratified along feasible Black/White racial lines and urbanization levels, and ordered on a back-to-back (ascending, descending) basis along tenth and twelfth grade

Table 4.3.--Selection intervals and random starts for nonalternative, non-Hispanic public schools

1/ See table 4.2.
enrollment size. Our goal was to select a proportionate stratified systematic sample of schools from among the 15 major strata with within-superstratum selections made proportional to the stratum's total of tenth and twelfth grade students per grade.

The only deviation from this sample selection design concerned the Illinois augmentation sample which required an oversampling of schools. Th's of the 808 sample schools allocated to the Non-Alternative, Non-Hispanic Public schools, 62 would be from Illinois with 746 from the remaining 14 superstrata.

To get a proportionate sample from the remaining 14 superstrata, we first subtracted the measure size for Illinois from that of all Non-Alternative, Non-Hispanic Public schools, leaving the measure of size for the remaining schools at $3,468,847$ (RevMOS ${ }_{t=1}=\operatorname{MOS}_{t=1}-\operatorname{MOS}_{h=11}=3,656,884-188,037$). Thus using formula $\# 2$, we calculated the expected number of sample schools from each of the 14 superstrata (see table 4.2., column F..

To use the paired selection model for variance computations, the allocated number of sample schools had to be a multiple of two. Therefore, we rounded the computed number of expected selections to the nearest even number to arrive at the desired superstratum sample size $\left[D\left(n_{h}\right)\right]$ (see table 4.2., column G).

We then calculated a unique selection interval for each of the 15 superstratum (including Illinois), using formula \#3. A random start for each superstratum was selecte: and tho sample selections proceeded (see table 4.3.).

4.1.2.2 Non-Alternative, Non-Cuban Public School Selection

As loted above, we expected that we would sample 25 Hispanıc Public schools from the 813 allocated public scnools via proportionate allocation of sample units per school type. However, to meet sample size requirements for this
supertratum, we estimated that we would need 106 Non-Cuban Hispanic Public schools and twenty additional schools for the analysis of Cuban Public schools.

The total average number of Hispanic Public school students per grade was 118,546. After subtracting the 15,264 Cuban Public school students, we had 103, 282 students per grade $\left(\operatorname{MOS}_{t=2}\right)$. As before, we calculated the average number of students per tenth and twelfth grade in the whole of each of the five Non-Alternative, Non-Cuban Hispanic superstratum. The expected number of sample schools per superstratum $E\left(n_{h}\right)$ was again calculated using formula \#2. We rounded $E\left(n_{h}\right)$ to the nearest even number to arrive at the desired stratum sample size $\left[D\left(n_{h}\right)\right]$ (see table 4.4.).

We then calculated a selection interval (formula \#3) and picked a random start. In one superstratum (South Atlantic, \#17), there was one school which contained more students per grade than th.- calculated interval (i.e., the school AdjMOS $>I_{h=17}$). As designed, this school was selected with certainty, i.e. with a probability of selection equal to 1.00 . After selection, the total number of students per grade in this school was removed from that stratum's total:

$$
\operatorname{AdjMOS}_{h=17}-\operatorname{adjMOS} \text { school }=\text { REVadj } \mathrm{MOS}_{h}=5,819-1,220=4,579 .
$$

We then calculated a new selection interval based on the smaller REVadjMOS ${ }_{h=17}$ with $D\left(n_{h=17}\right)-1$ possible selections: $I_{h=17}=\operatorname{REVadjMOS}_{h=17} /\left[D\left(n_{h=17}\right)-1\right]=$ $4,599 / 5=919.80$ (see table 4.5.).

4.1.2.3 Cuban Public School Selection

Since we coid only identify 20 puslic schools with 20 percent or more Cuban r.ollees, we selected each schoul with certainty.

Table 4.4.--Non-alternative, Hispanic public school sample

(A) (B)	(C)	(D)	(E)	(F)	(G)
Stratum $\begin{gathered}\text { Total } \\ \text { MOS }\end{gathered}$	$\begin{aligned} & \text { Stratuna } \\ & \text { MOS } \end{aligned}$	$\begin{gathered} \text { Proportion } \\ (c / b) \\ \hline \end{gathered}$	Total sample	Stratum sample (d•e)	Actual sample size
Total 118,546	- -	\checkmark	126	- -	- -
Cuban	15,264	. 1288	- -	16.2	20 1/
$\begin{aligned} & \text { Total } \\ & \text { (milnus Cuiban) } 103,282 \end{aligned}$	- -	- -	106	- -	- -
Northeast and North Central	7,887	. 0764	- -	8.1	8
South Atlantic	5,819	. 0553	- -	6.0	6
West South Central	39,607	. 3835	--	40.7	40
Mountain	18,908	. 1831	- -	19.4	20
Pacific	31,061	. 3007	- -	31.9	32

1/ The Cuban stratum was oversampled to achieve a sample size of 20 . Its MOS was removed from the total MOS for the remaining sample size calculations.

8:"

Table 4.5.--Selection intervals and random starts for non. alternative, non-Cuban Hispanic public schools

(A)	(B)	(C)	(D)	(E)
Superstratum	$\begin{gathered} \text { Ad justed } \\ \text { stratum } \\ \text { MOS } \\ \left(\operatorname{adj} \text { MOS }_{h}\right) \underline{1} / \end{gathered}$	$\begin{gathered} \text { Stratum } \\ \text { sample } \\ \text { size } \\ \left(D\left(n_{h}\right)\right) \end{gathered}$	$\begin{gathered} \text { Selection } \\ \text { interval } \\ \left(I_{h}=\operatorname{adj}_{\operatorname{MOS}_{h}} / D\left(N_{h}\right)\right) \end{gathered}$	Random start (RS)
Northeast and				
North Central (16)	8,005	8	1000.63	603.50
South Atlantic (17)	5,819	6	969.83	- -
Self-representing schools	$(1,220)$	(1)	- -	- -
Non-selfrepresenting 3chools	4,599	5	919.80	623.46
West South				
Central (18)	40,647	40	1,016.18	698.78
Mountain (19)	19,249	20	962.45	460.22
Pacific (20)	31,296	32	978.00	777.25

1/ See table 4.4.

4.1.2.4 Alternative Public Schools

Our initial computations showed that we could expect. eleven Alternative Public schools in a proportionate stratified sample. Design requirements, however, required at least 50 selections, so this stratum was oversampled to achieve that sample size goal.

Initally we calculated a selection interval as before. In this stratum, four schoois' MOS were greater than that interval. These were selected with certainty. A new selection interval, based on the smaller stratum MOS and * $50-4=46$ selections, was calculated. After selecting a random start, the sample was selected (see table 4.6.).

4.1.2.5 Non-Catholic Private Schools

Given the fact that our expected allocation of Non-Catholic Private schools in a proportionate sample was 28 , we had to oversample to achi ve a total of 50 such schools in the sample.

Since there vere only 12 identified Elite schools, these twelve were selected with certainty. The remaining 38 selections were to come from the Non-Elite, Non-Catholic Private school stratum. We computed a selection interval and selected a random start as before (see table 4.7.).

4.1.2.6 Catholic Private School Selections

We noted earlier that we needed 88 Catiolic schools in the sample while we expected only 51 (4 Black/Hispanic and 47 others). Thus we oversampled the Black/Hispanic schools to achieve that goal while maintaining the expected allocations for the remaining Catholic schools.

For the Non-Black, Non-Hispanic Catholic schools, we computed a selection interval and selected a random start to select 48 sample schools.

Table 4.6.--Selection intervals and random starts for alternative public schools

(A)	(B)	(C)	(D)	(E)
Superstratum	$\begin{gathered} \text { Adjusted } \\ \text { stratum } \\ \text { MOS } \\ \text { (adj } \text { MOS }_{h} \text {) } \end{gathered}$	$\begin{gathered} \text { Stratum } \\ \text { sample } \\ \text { size } \\ {\left[D\left(N_{h}\right)\right]} \end{gathered}$	$\begin{gathered} \text { Selection } \\ \text { interval } \\ {\left[I_{h}=\operatorname{adj} \operatorname{MOS}_{h} / D\left(N_{h}\right)\right]} \end{gathered}$	$\begin{aligned} & \text { Random } \\ & \text { start } \\ & \left(\text { RS }_{h}\right) \\ & \hline \end{aligned}$
Alternative public (22) 49,990 50 999.80				
schools	$(4,269)$	(4)	- -	- -
```Non-self- representing schools 45.721 46 216.79```				

- B..

Table 4.7.--Selection intervals and random starts for private schools


The remaining Catholic schools had been stratified into Cuban and NonCuban schools. We decided to select 10 of the 14 Cuban schools. The initially computed selection interval was smaller than the MOS for four of these schools; these were selected with certainty. Again, we calculated a new selection interval based on the smaller adjusted $M O S$ and the $10-4=6$ selectipns. We then selected a random start.

This left 30 selections for the Black/Hispanic Nongluban. Catholic schools, which were selected via an interval and random start (see table 4.7.).

### 4.1.2.7 Washington State Augmentation School Sample

The Washington State Augmentation sample was designed and sijected after the national $H S \& B$ sample was drawn. We used the same systematic sampling techniques as in the national sample, with selections again made with proba- t bilities proportional to the size of the average tenth and twelfth grade enrollment.

To achieve statistical validity, we selected a sample of fifty schools from the 371 schools in the Washington State universe. With a total adjusted measure of size $\left(\operatorname{adjMOS}_{h=38}\right)$ equal to 61,643 , we computed a selection interval of 1232.86 (using formula $\# 3$ ). ${ }^{-}$The selected random start was 743.56 .

### 4.2 Supplemental Selections

In selecting a sample for a survey it is almost always the case that some of the sampling units will refuse to cooperate, that is, refuse to be interviewed. While in this case the 1,122 schools were not strictly the ultimate data collection units but rather clusters of respondents, their cooperation was essential if we were to interview the yltimate sampling units, i.e., the students in the selected schools.

In addition, although NORC made an intensive effort to ins re that all of the schools in our high school universe were eligible for the survey, a few ineligible schools did remain in the sampling frame. This was the result of incorrect data and school closings, and could only be discovered after.the school sample was fielied.

As required by the basic design specifications, we built procedures into the sample design to correct for the loss of schools caused by non-response
4.2.1 Substitutions for Refusal Schools

Schools that refused to participate in the $H S \& B$ survey gave several reasons. for their non-cooperation. These reasons fell into the following categories:

1) the time factor - schools noted that they had already lost a great deal of time due to weather, teacher strikes, etc., and/or the administration of the-tests and questionnaires would take too much time out of regular clas̀s work;
2) the teachers' present work load was already at a maximum, and the HS \& B survey would be too much of a burden for the teachers to bear; $3)^{\prime}$ there was already too much research being conducted;
3) there was already too much government intervention in education;
4) this research woeld not be of any value to the present students; and
5) the school did not have the facilities available for admjnistering the tests and question.aires.

In most capes, the refusal schools gave a combination of these reasons as justification for their non-participation.

$$
1 i
$$

School type/superstratum	General	Acadenic	Vocational	Other	Total
Sophomores					
Non-altermative, nonHisnonie mulife schnols	. $1083(4459)$	.0757(1675)	. 0588 (865)	. 3383 (441)	. $0938(7440)$
New Eingry ( 1 )	. $1359(197)$	. 0407 (91)	. 0420 (48)	. 7448 (97)	.0873(43)
New York	.1079(261)	. 2266 ( 415 )	. 0098 (8)	. 2490 (37)	13:1(721)
Ne J Jersev (t	. 2842 (174)	. 1674 (113)	. 0415 (1")	. 5564 (21)	.1879(325)
Pennsvivapa (4)	. $1133(106$ )	. 0466 (56)	. 0761 (62)	. 3100 (28)	.0829(252)
South ayantic (5)	. $1109(760)$	.0366(132)	.0780(276)	. 1579 (3)	.0846(1205)
E. South Central (6)	. 1139 (499)	. 0063 (11)	. 0684 (84)	. 2109 (24)	$0831(618)$
W. South Central (7)	. 0548 (65)	. 0121 (6)	. 3240 (9)	. 0 (0)	. 0383 (80)
Texas (8)	.1470(287)	. 0159 (14)	. 0201 (22)	. 0 (0)	. $0808(323$ )
Ohio (9)	.0789(184)	. 2092 (337)	. 1456 (71)	. 2439 (14)	. $1350(606)$
E. North Central (10)	.1608(645)	. 0352 (78)	. 0644 (109)	. 3623 (56)	. 1099 (888)
Illinois (11)	.0683(193)	. 0584 (54)	. 0712 (65)	. 6998 (77)	.0815(389)
W. North Central (12)	.0503(320)	. 0511 (93)	. 0386 (42)	. 0 (0)	. $0490(455$ )
Mountain (13)	. 1114 (277)	. 0566 (70)	. 0840 (44)	2761 (8)	. 0933 ( 399)
Pacific (14)	.0763(126)	0 (0)	. 0 (0)	. 0 (0)	. 0524 (126)
California (15)	. 2129 (364)	.1673(202)	. 0352 (8)	. 6237 (40)	. 1919 (614)
Non-alternative, Riapanic public achoola	.1034(141)	. 0180 (8)	. 0660 (36)	. 0148 (2)	. $0755(187)$
Northeat \& N. Central (16)					
S. Atlantic (17)	. 0500 (1)	. 0 (0)	. 0 (0)	. 0 (0)	. 0278 (1)
W.S. Central (18)	. 0853 (47)	. 0 (0)	. 0 (0)	$\because 0$ (0)	. 0461 (47)
Mountain (19)	. 2257 (14)	. 0737 (2)	. 1212 (8)	. 1698 (2)	. 1607 (25)
Pacific (20)	. 1077 (79)	. 0380 (7)	. 0967 (28)	. 0 (0)	.0900(114)
Alternative schools (22)	. 2752 (29)	. 0833 (8)	. 0889 (16)	. 0 (0)	. 1346 (53)
Non-public, non-Cacholic schoola	. 0 (0)	. $0367(273$ )	--	. 0 (0)	. $0347(273)$
Non-elite (33)	. 0 (0)	.0369(273)	--	. 0 (0)	.0349(273)
Elite (34)	. 0 (0)	. 0 (0)	--	--	. 0 (0)
Non-public, Catholic schoola	. 0245 (69)	. 0096 (91)	. 0 (0)	. 0 (0)	. 0124 ( 260 )
Non-Black, Non-Hiapanic (35)	. 0254 (68)	. 0082 (74)	. 0 (0)	. 0 (0)	.0116(142)
Black/Hiapanic, Non-Cuban (36)	. 0 (0)	. 0164 (4)	. 0 (0)	. 0 (0)	. 0092 (4)
Cuban (37)	.0378 (1)	:1155 (12)	. 0 _(u)	. 0 (0)	. 0851 (13)
Total	.1028(4697)	.0519(2054)	.0575(917)	.2620(443)	.0788(8111)
Seniors					
Non-alternative, nonHispanic public schools	. 1347 (4265)	.1127(2897)	. $1280(2670$ )	. $5142(482)$	. 1303 (10314)
New England (1)	. 2558 (294)	.0809(179)	.0753(112)	. 6428 (81)	. $1338(666)$
New York (2)	. 0656 (127)	. $2658(493)$	. $3080(449)$	. 5153 (37)	. 2079(1106)
$0^{\text {New Jersey (3) }}$	. 2586 (110)	. 2845 (227)	. 0965 (46)	. 6124 (33)	. 2377 (416)
- Pennaylvania '(4)	. 2376 (192)	. 1082 (142)	. 0940 (82)	. 6009 (33)	.1473(449)
South Atlantic (5)	. 0819 (450)	. 0999 (370)	. 1009 (475)	. 2500 (52)	.0954(1347)
E. South Central (6)	. 2223 (736)	. 0273 (53)	. $1138(262)$	. 6911 (15)	.1408(1066)
W. South Central (7)	. 0825 (69)	. 0 (0)	. 0387 (16)	. 0 (0)	. 0476 (25)
Texaa (8)	. 1412 (220)	. 0 (0)	. 0107 (15)	1.000 (22)	. 0623 (257)
Ohio (9)	. $0785(116$ )	. $1581(330)$	. 0918 (93)	. 6187 (30)	. 1229 (569)
E. North Central (10)	. $1772(636)$	.0793(183)	. 2041 (418)	.	. 1557(1237)
Illinois (11)	.0559(107)	.0748(117)	. $1237(141$ )	1.000 (138)	. $1056(503)$
W. North Central (12)	. $1150(538)$	.0849(252)	. 0477 (78)	. 0 (0)	.0929(868)
Mountain (13)	. 1339 (204)	.0730(121)	. 3101 (298)	. 0 (0)	.1477(623)
Pacific (14)	. 0327 (54)	. 0 (0)	. 0 (0)	--	. 0219 (54)
California (15)	. $3115(412)$	. $3232(432$ )	.4023(186)	1.000 (41)	. 3386 (1071)
Non-alternative, Hiepanic oublic_achoola	. 1678 (229)	.1170. (39)	.0790 (51)	. 1544 (9)	. $1367(328)$
Northeast of. Central (16)					
w. S. Central (18)	. 1779 (78)	. 0760 (13)	. 0135 (6)	. 0996 (2)	. 0946 (98)
Mountain (19)	. 0764 (6)	. 2947 (13)	. 2896 (9)	1.000 (3)	. 1995 (31)
Pacific (20) Cuban (21)	.1708(144)	. 1275 (13)	. 1851 (36)	. 1157 (3)	.1680(196)
Altermative schoola (22).	. 3924 (39)	. 2301 (24)	. 0319 (4)	. 0 (0)	.2078 (67)
Non-public, nontCatholic schools	. 0 (0)	. $0270(234$ )	. 0 (0)	--	.0245(234)
$\begin{aligned} & \text { Non-elite (33) } \\ & \text { Elite (34) } \end{aligned}$	$\begin{array}{ll} .0 & (0) \\ .0 & (0) \end{array}$	$\begin{aligned} & .0269(231) \\ & .0571 \end{aligned}$	. 0 (0)	--	$\begin{aligned} & .0243(231) \\ & .0556 \quad(3) \end{aligned}$
Non-public. Catholic achoola	. 0355 (78)	.0811(794)	. 0 (0)	. 0 (0)	. $0675(872$ )
```Non-Black, Non-H1apanic (35) Black/Hiapanic. Nom-Cuban (36) Cuban (37)```	. 0392 (78)	.0797(751)	. 0 (0)	. 0 (0)	. 0674 (829)
	. 0 (0)	. 1239 (31)	. 0 (0)	--	. 0654 (30)
	. 0 (0)	. 0979 (12)	. 0 (0)	--	. 0768 (12)
Total	.1278(4611)	.0894(3987)	.1202(2724)	.4676(491)	.1132(11813)
			9 i		

highest levels of non-response occur among students enrolled in the "Other" category. This is not strictly a type of educational program. Rather, the base of the ratio is actually equal to the number of refusal students for whom the school coded "Other," plus the number of cooperating students who did not answer the item in the actual HS\&B survey. Thus, those students enrolled in General programs had the highest rate of non-response. Students in Academic and Vocational programs had nearly identical non-response rates, with the exception of the weighted seniors. In this case, the Vocational program students' non-response rate equalled that of the General program student. These patterns are fairly consistent across school type and superstrata, although there is a great deal of variation.

CHAPTER 6

SAMPLE WEIGHTS

The purpose of sample weighting was to account for disproportionate selection probabilities for students and for differential non-response.

The weighting design followed a three stage process. First, we clalculated the selection probabilities of each of the cooperating schools. Then we multipliad the inverse of the probabilities by a factor that adjusted for ineligible and non-cooperating sample schools, to get the stage one (school level) weight (see section 6.1) Next we computed the selection probabilities for the students in each cooperating school in each grade level. Again the inverse of this was multiplied by a final student sample size adjustment factor, which took into account ineligible and non-responding sampled students as well as the new students selected from the updated student roster. The product equalled the stage two (student level) weight (see section 6.2). Finally, we took the product of the two weights to get an overall design weight for each student in the sample (see section 6.3).

We also computed overall design weights for the Washington State Augmentation sample. These weights, while similar to the national sample weights, used slightly different formulas in the calculations to account for this unusual situation and because certain items required for the adjustment factors were not available (see section 6.5).

6.1 School Levels Weights

The stage one probabilities of selection for high schools in the HS\&B sample were calculated independently for each of the 27 superstrata. The 19%
probabilities were a function of the school's measure of size (average tenth and twelfth grade enrollment) and the selection interval used in that school's superstratum. Thus:

$$
\begin{align*}
& P_{1 h i}=\frac{\operatorname{AdjMOS}_{h i}}{I_{h}} \tag{1}\\
&=\frac{\operatorname{AdjMOS}}{h i} \\
&\left(\operatorname{AdjMOS} S_{h} / n_{h}\right)
\end{align*}
$$

where:
$P_{1 h i}=$ stage one probability of selection for the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum;

AdjMOS $_{h i}=$ the average of the tenth and twelfth grade enrollment sizes for the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum (where school- with an average less than 36 had their MOS set at 36);
$I_{h}=$ selection interval for the $h^{\text {th }}$. superstratum;
$\operatorname{AdjMOS}_{h}=$ adjusted measure of size (the sum of the average of the tenth and twelfth grade enrollment sizes of all of the schools in the $h^{\text {th }}$ superstratum, when schools with an average less than 36 had their :10S set at 36):
$n_{h}=$ number of schools originally sampled in the $h^{\text {th }}$ superstratum. The only exceptions to this were those schools selected with certainty; i.e., schools whose MOS was greater than the selection interval (I_{h}) of their superstratum, or schools in the superstrata where all of the schools were selected (see chapter 4). The calculated $\mathrm{P}_{1 \text { hi }}$ would be greater than 1.00 for the former and less than one for the latter type of schools. For these schools we therefore preset the selection probabilities at $P_{l h i}=1.00$. When this occurred, measures of size were reproportioned within superstrata to produce the required number of selections.

$$
13:
$$

As we noted in chapter 4 , many of the sampled schools were either Ineligible for sample selection or refused to participate in the survey. NORC's sample design replaced these non-responding schools and the nonresponding replacement schools. However, survey completion deadlines prevented us from replacing every non-responding school. Thus, in all but a few superstrata (see chapter 5), there were fewer schools cooperating then were initially selected. To correct for varying eligibility rates as well as differential substitution rates, we calculated an adjustment factor for each superstratum which was equal to:

$$
\begin{equation*}
\mathrm{AF}_{1 h}=\frac{E L I G_{h}}{\operatorname{COOPn}_{h}} \tag{2}
\end{equation*}
$$

where:
$A F_{1 h}=$ the Stage one (school level) eligibility/non-replacement adjustment $f a c t o r$ for the $h^{\text {th }}$ superstratum;
$E L I G_{h}=$ the number of eligible schools in the $h^{\text {th }}$ superstratum among the initial selections;
$\operatorname{CoOPn}_{h}=$ the final number of cooperating schools in the $h^{\text {th }}$ superstratum. For the five superstratum in which there were both non-self-representing. schools ($P_{1 h i}<1.00$) and self-representing schools selected with certainty ($P_{1 h i}=1.00$), we calculated separate adjustment factors for each subset of schools within each superstratum.

We calculated the school level stage one sample weight as:

$$
\begin{equation*}
W_{1 h i}=\frac{1}{P_{1 h i}} \cdot A_{1 h} \tag{3}
\end{equation*}
$$

where:
$W_{1 h i}=$ Stage one (school level) weight for the $i^{\text {th }}$ school in the
$\quad h^{\text {th }}$ superstratum;
$P_{1 h i}=$ Stage one (school level) selection probability for the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum (see formula $\# 1$);
$A F_{1 h}=$ Stage one (school level) eligibility/non-response adjustment factor for the $h^{\text {th }}$ superstratum (see formula ${ }^{\text {作2). (There will be two }}$ $\mathrm{AF}_{1 \mathrm{~h}}$ for superstratum with both self-representing and non-selfrepresenting schools).

6.2 Student Level Weights

Within each grade of each cooperating school, the probability of selection for that grade's sampled students was equal to:

$$
\begin{equation*}
P_{2 h i j}=\frac{M_{1 h i j}+M_{2 h i j}}{N_{1 h i j}+N_{2 h i j}} \tag{4}
\end{equation*}
$$

where:
$P_{2 h i j}=$ Stage two (student level) selection probability for the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school of the $h^{\text {th }}$ superstratum;
$M_{1 h i j}=$ the number of original selected students in the $j^{\text {th }}$ grade of the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum;
$M_{2 h i j}=$ the number of students selected from the update student roster from the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum;
$N_{1 h i j}=$ the total number of students on the original student roster for the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum;
$N_{2 h i j}=$ the total number of students in the update student roster for the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school for the $h^{\text {th }}$ superstratum. A student selection probability was calculated independently for each grade within each school.

Then, to account for students deemed ineligible and not replaced by design and for non-cooperating el.gible students, we computed a student non-response adjustment factor, ecual to:

$$
\begin{equation*}
A F_{2 h i j}=\frac{M_{1 h i j}+M_{2 h i j}-\text { INELIGm }_{1 h i j}}{\text { COOPm}_{h i j}} \tag{5}
\end{equation*}
$$

where:
$\mathrm{AF}_{2 h i j}=$ Stage two (student level) non-response adjustment factor for the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum;

INELIGm $_{1 h i j}=$ the number of ineligible and unreplaced students from the original student roster of the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum;

COOPm $_{h i j}=$ the number of final cooperating students in the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school $i n$ the $h^{\text {th }}$ superstratum.

The final stage 2 (student level) welgit was calcuilated as:

$$
\begin{equation*}
\mathrm{W}_{2 \mathrm{hij}}=\frac{1}{\mathrm{P}_{2 h_{2 j}}} \cdot \mathrm{AF}_{2 \mathrm{hij}} \tag{6}
\end{equation*}
$$

where:
$W_{2 h i j}=$ Stage two (student level) weight for the j th grade in the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum;
$P_{2 h i j}=$ Stage two (student level) selection probability for the $j^{\text {th }}$ grade in the $i^{\text {th }}$ s:hool in the $h^{\text {th }}$ superstratum (see formula \#4);
$\mathrm{AF}_{2 \mathrm{hij}}=$ Stage two (student Zevel) non-response adjustment factor for the $j^{\text {th }}$ grade in the $i^{\text {th. }}$ school in the $h^{\text {th }}$ superstratum.

Again, we independently calculated a weight for each grade within each school within each superstratum. .

6.3 Overall Design Weights

The overall design weight for all students in the HS\&B sample was the product of the two stage-specific weights. That is:

$$
\begin{equation*}
D W_{h i j k}=W_{1 h i} \cdot W_{2 h i j} \tag{7}
\end{equation*}
$$

where:
$D W_{h i j k}=$ overall design weight for the $k^{\text {tin }}$ student in the $j^{\text {th }}$ grade of the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum; $W_{1 h i}=s t a g e$ one (school) level weight for the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum (see formula \#3);
$W_{2 h j j}=$ stage two (student level) weight for the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school of the $h^{\text {th }}$ superstratum (see formula \#6). Thus, the data for any student in a specific grade, school, and superstratum ..would be adjusted by that grade/school/superstracum's unique overall deisgn weight.

6.4 Post-S ratification Weighting

NORC alsc studied the usefulness of employing post-Stratification weighting to bring the HS \& B sample estimates closer to the actual population means. To d, we compared public hand private school enrollment data from the NCES
lithe unpublished Fall 1979 survey for public schools and the published $\dagger 78$ survey for private schools) to the public and private school population projections from the Spring 1980 HS\&B final weighted sample, respectively.

In both cases, we first adjust the NCES data to account for school dropout rates between the fall and spring of a school year. For sophomores, NCES's Digest of Education Statistics showed an 8.65 per cent difference between Fall enrollment in grade ten and fall enrollment in grade eleven. NORC estimated that
between one-third and one-half of this yearly dropout rate occurred between the fall and the spring. Thus we derived two adjustment factors o: 97.12 percent ($100-1 / 3 \cdot 8.65$) and 95.67 percent ($100-1 / 2 \cdot 8.65$) for suphomores. based on these estimates.

For seniors, NCES showed a difference of 5.70 percent between fall enrollment and spring/summer graduates. Since the $\mathrm{HS} \delta \mathrm{B}$ sample covered both graduates and non-graduates we estimated that either 1.76 percent or 1.51 percent of the NCES non-graduates would have left school by the spring, based on answers to relevant questions in the current and 1972 HS $\& B$ surveys, respectively. Thus spring enrollment'would be either 96.06 percent [100-(5.70 - 1.76)] or 95.81^{*} percent $[100-(4.70-1.51)]$ of the fall enrollment. Since the two estimates were sufficiently close, we used the average (95.94 percent) to estimate senior dropout rates.

In the case of the private schools only, we were comparing two different cohorts due to the year difference in the NCES private school and HS\&B surveys. NORC therefore compared the 1979 NCES data to the 1978 NCES data for sophomores and seniors separately, calculating cohort ratios of .977 and .982 , respectively.

Tables 6.1 and 6.2 show the adjusted NCES enrollment figures relative to the HS \&B population projections, by grade and by regional/divisional subclasses. While some difference do exist, NORC believed that these were due primarily to the slightly different school universe frames used in the NCES and HS\&B surveys. We therefore concluded that the HS \& B° projections were as close to correct as were the NCES data and that the use of post-stratification weights would not perceptibly increase the precision of the HS $\& B$ sample estimates.

Table 6.1.--Public school enrollment data comparisons between the fall 1979 NCES survey and the HS\&B population projections, by region and grade $1 /$

	Sophomores						Seniors			
N	(1) NCES FalN enrollment 1979	(2) Dropout $\times .9712 \underline{2}$	(3) $\begin{aligned} & \text { rates } \\ & \times .9567 \underline{2} \\ & \hline \end{aligned}$	(4) HS $\& B$ projection	$\begin{gathered} (5) \\ \text { Com } \\ (4 / 2) \\ \hline \end{gathered}$	(6) son $(4 / 3)$	(7) NCES Fall enrollment 1979	(8) Dropout rates $x .9581 \underline{2}$	$\begin{gathered} (9) \\ \text { HS\&B } \\ \text { pro- } \\ \text { jection } \end{gathered}$	(10) Comparison ratio $(9 / 8)$
New England Hid Atlancie	$\begin{aligned} & 198 \\ & 602 \end{aligned}$	192 585	189 576	197 544	1.03 0.93	1.04 0.94	171 500	164 490	167 427	1.02 0.87
E.N. Central	703	$683{ }^{\circ}$	673	684	1.00	1.02	611	585	548	0.94
W.N. Central	278	270	266	267	0.99	1.00	266	255	248	0.97
S. Atlantic	584	567	559	577	1.02	1.03	451	432	426	0.99
E.S. Central	230	223	220	199	0.89	0.90	- $\cdot 181$	- 173	100	0.92
W.S. Central	382	371	365	352	0.95	0.90	319	306	270	0.88
Mountain	187	182	179	180	0.99	1.01	167	160	152	0.95
Pacific	475	461	454	429	0.93	0.94	414	397	355	0.89
Total	3,638	3,534	3,481	3,430	0.97	0.99	3,091	2,961	2,753	0.93

1/ Numbers are in thousands.
2/ See section 6.4 for the calculations.

$$
\therefore \because!
$$

$$
\hat{x}_{0} U_{t}
$$

Table 6.2.--Private school enrollment data comparisons between the fall 1978 NCES survey and the HS $\& B$ population projections, by region and grade 1/

202

6.5 Washington State Sample Weights

Die to the unique structure of Washington State's supplementary augmenttin sample, the weighting procedures described above underwent some modifications. First, there were actually two samples from Washington State. One of them consisted of the 15 schools from the state which were selected and which cooperated in the national sample. Five of these were schools from Washington which we selected as replacements for ineligible or refusal schools in the national sample. The second sample consisted of the 50 schools from the state selected in the augmentation sample.

The final sample for Washington State consisted of the total of these two samples. The selection probabilities for the first 15 schools selected in the national sa:aple equalled 1.00 ; i.e., these schools automatically became part of Washington's sample and were therefore selected with certainty. Their stage one (school level) weights (W_{11}) equalled the inverse of the probabilities of selection, i.e., the weights also equalled 1.00 .

NORC selected the actual augmentation sample after the national sample was selected but before the field work had begun. Therefore, when we constructed the sample frame of schools for the Washington State augmentation sample, we removed those schools which were selected in the national sample. We did not, however, know about the five schools which we would select as replacement or substitutes for non-responding national sample schools nor about the two nationally sampled schools from Washington which would refuse to participate in the survey. Thus, for the calculation of the stage one weights we used a measure of size that was modified to account for these schools. This revised adjusted measure of size (RevAdjMOS) was equal to
the superstratum's original adjusted MOS (average tenth and twelfth grade enrollment sizes summed over all schools, where we set the MOS of a school with an actual MOS of less than 36 at 36) minus the adjusted MOS of the five replacement/ substitute schools plus the adjusted MOS of the two refusal schools.

The stage one weight for each cooperating school in the Washirgton State sample was equal to:

$$
\begin{equation*}
W_{1 i}=\frac{\operatorname{RevAdjMOS} / n}{\operatorname{AdjMOS}} \tag{8}
\end{equation*}
$$

where:

$$
\begin{aligned}
W_{1 i}= & \text { the stage one (school level) weight for the } i^{\text {th }} \text { school; } \\
\text { RevAdjMOS }= & \text { the revised adjusted measure of size for the superstratum } \\
& \text { (see above); } \\
n= & \text { the original number of selections in the sample }=50 ; \\
\text { AdjMOS } i= & \text { the adjusted measure of size (average } 10 \text { th and } 12 \text { th grade }
\end{aligned}
$$

The stage two (student level) weight for all schools ($\mathrm{W}_{2 i j}$) was equal to;

$$
\begin{equation*}
W_{2 i j}=\frac{M_{i j}}{\text { COOPm }_{i j}} \tag{9}
\end{equation*}
$$

where:
$M_{i j}=$ the total roster size for the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school; COOPm $_{i j}=$ the number of cooperating students in the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school.

This formula applied to both the certainty schools and the Washington State schools. We calculated a separate wnight for each grade of each school in the sample. We did not, however, calculate a stage one or stage two nonresponse adjustment factor because we could not ubtain the stage two student level non-response rates.

Finally, the overall design weight for a specific grade within a specific school ($\mathrm{DW}_{1 j}$) was equal to the product of the two stage specific rates, or:

$$
\begin{equation*}
\mathrm{DW}_{1 j}=\mathrm{W}_{11} \cdot W_{21 j} \tag{10}
\end{equation*}
$$

Therefore, when analyzing data from Washington State's in-state representative sample, one would adjust the data from each grade within each school by its specific design weight.

CHAPTER 7

SAMPLING ERRORS

7.1 Exact Sampling Errors

To measure the precision of the HS\&B sample estimates, NORC calculated the design-specific standard errors for several demographic subclasses of 35 and 38 statistics for sophomores and seniors respectively. These standard errors are shown in the Appendix,

As noted in the previous sections of this report, NORC had designed the initial school sample to allow for the use of paired selection variance computations. However, the final HS\&B school sample contained a large number of replacement schools which were selected into the initial sample but which proved to be out-of-scope. While we drew the former from the superstratum of the schools they were replacing, there was no relationship between the replacement and replaced schools' positions in the superstratum. It was therefore more appropriate to use the general formula for computing the variances of a ratio estimator r (such as a sample mean) for a stratified unequal cluster sample.

To perform the necessary calculation, we revised the original superstrata to create computing strata. First, each self-representing school was removed from its original superstratum to form its own individual computing stratum. These schools, which had a selection probability equal to 1.0 , had an average enrollment size greater than their respective superstratum's selection interval (I_{h}) or were in superstrata in which all of the schools were selected (see section 4). Since all of the schools in the Cuban Public school superstratum (2l) and the Elite, Non-Catholic Private school superstratum (134) were selected with certainty, we were left with 25 major computing strata (the remaining original superstrata) plus an additional
computing stratum for every self-representing school in the final sample for use in computing the variances. The variance formula below thus worked on two levels. For the 25 major computing strata the ultimate clusters were the selected schools, with the assumption of independent random selection of schools within each superstratum. For the computing strata comprised of a single self-representing school, the ultimate clusters were the selected students, with the assumption of independent random selection of students within each school.

The formula for computing the variance of a stratified ratio mean r for a particular variable Y is:
where:

$$
\begin{aligned}
\operatorname{var}(r) & =\text { the variance of a stratified ratio mean } r ; \\
r & =\text { the stratified ratio mean, equal to: }
\end{aligned}
$$

$a_{h} \quad=$ the number of ultimate clusters in the $h^{\text {th }}$ computing stratum;
$y_{h \alpha}=$ the weighted value of the variable y for the $\alpha^{\text {th }}$ ultimate cluster in the $h^{\text {th }}$ computing stratum. If the $\alpha^{\text {th }}$ ultimate cluster was a

$$
\begin{align*}
& \left.\int 2 r \sum_{h}^{H} \frac{1}{a_{h}-1}\left(a_{h} \sum_{\alpha}^{a_{h}} y_{h \alpha} x_{h \alpha}-y_{h} x_{h}\right)\right] \tag{1}
\end{align*}
$$

student, y_{h} equals:
$\left(D W_{h i j k}\right)\left(Y_{h i j k}\right)$
where $D W_{h i j k}$ is the design weight for the $k^{\text {th }}$ student in the $j^{\text {th }}$ grade in the $i^{\text {th }}$ school in the $h^{\text {th }}$ superstratum (calculated in section 6) and $y_{h i j k}$ is the value of y for the $k^{\text {th }}$ superstratum. If the $a^{\text {th }}$ ultimate cluster was a school, $Y_{h \alpha}$ equals:
$\sum_{k}^{K}\left(D W_{h i j k}\right)\left(y_{h i j k}\right)$
which is the sum of the students' weighted y values from a school;
$y_{h} \quad=\sum_{a}^{a_{h \alpha}} ;$
$X_{h a}=$ the sum of the weights within the $a^{\text {th }}$ ultimate cluster in the $h^{\text {th }}$ computing stratum. If the $\alpha^{\text {th }}$ ultimate cluster was a student, $x_{\text {ha }}$ equals:
(DW ${ }_{h 1 j k}$)

If the $\alpha^{\text {th }}$ ultimate cluster was a school, $x_{h \alpha}$ equals:
$\sum_{k}^{\mathrm{K}}\left(\mathrm{DW}_{\mathrm{hijk}}\right)\left(\mathrm{X}_{\mathrm{hijk}}\right)$
which is the am of design weights for the k students in the $j^{\text {th }}$ grade in the $1^{\text {th }}$ school. 203

```
        \(a_{h}\)
\(x_{h}=\sum_{\alpha} x_{h \alpha} ;\)
H
x
\(=\sum_{h} X_{h}\).
```

To get the standard erroz of $r[s e(r)]$ we took the square root of the variance, or:

$$
\begin{equation*}
\operatorname{se}(r)=\sqrt{\operatorname{var}(r)} \tag{2}
\end{equation*}
$$

It should be noted that this formula does not take into account the internal stratification of each superstratum or the use of systematic sampling techniques within each superstratum.

7.1.1 Alternative Methods

The formula (equation 1 on page 164) used to calculate the variance of an estimate is an example of a Taylor Series estimator. Taylur Series estimators are based on the relationship between the variability of an estimate and the variability of the observations from which it is derived.

There are other methods for estimating sampling ertors that compare estimates from two (or more) independent samples selected according to the. same sample design. We do not usually have two samples. But, under certain circumstances, we can simulate estimates from two samples by dividing the actual sample into half-samples. Both Jackknife Repeated Replication (JRR) and Balianced Repeated Replication (BRR) are methods that use the general etrategy of breaking the sample into half-samples.

NORC considered JRR and BRR but chose the Taylor Series estimator largely for practical purposes. Both $J R R$ and $B R R$ require elaborate
computations as/well as extensive costly programming. In our view, the practical sdvantages outweighed the statistical considerations. JRR and BRR are in theory applicable to "paired selection" designs. As we noted earlier (page 163), NORC had planned such a design for the High School and Beyond sample, but the use of replacement schools had altered our original plan. JRR and BRP estimators are believed to be less susceptible to distortion by a few "outliers" (i.e., highly deviant observations) and are thought to reflect variance due to non-response more accurately then Iaylor Series estimators.

Frankel ${ }^{1}$ has used Monte Carlo wethods to investigate the relative accuracy of Taylor Series, JRR, and BRR estimates of sampling variances. His investigation indicates that no one of the techniques is uniformly better than the others. The resulis of the comparison depend on both the type of estimator whose variance is being calculated and on the index used to compare the techniques. Frankel examined means, differences between means, simple, partial, and multiple correlations; he examined the relative bias of the variance estimates and the relative mean square error. He also examined an index of his own. 2 On this last index, $B R R$ variance estimators were consistently more accurate (the others tended to be somewhat more liberal), but even with this index the differences between the techniques were quite small (see Tables 7.1 through 7.9 in Frankel's report).

[^4]$$
\frac{x-E(x)}{S E(x)}
$$

In which x is a sample estimate, $E(x)$ is its expected value, and $S E(x)$ is its standard error, as estimated by Taylor Series, JRR, or BRR methods.

7.1.2 Implications of the Use of Taylor Series Estimators

For means and proportions, Taylor Series estimates are widely used because they are relatively easy and inexpensive to compute and because they do not appear to differ appreciably from BRR and JRR estimates. In the High School and Beyond study, the Taylor Series estimates may not fully capture the variance attributable to non-response weighting; as a result, the variance estimates presented here may be underestimates. On the other hand, the Taylor Series estimates we present ignore the internal stratification within superstrata and the use of systematic selection--which could lead to overestimation. We suspect that the estimates presented here would differ only slightly from BRR or JRR est'?mates and that the differences would show no consistent pattern.

For regression coefficients and other complex statistics, Taylor Series estimates lose their advantage in computational ease. BRR estimators are probably the most useful for estimating the variance of complex statistics. (For this reason, we calculated BRR variance estimates, for a few key statistics. See Appendix A of the report prepared by Coleman et al.) Where priority is placed on such complex statistics, we recommend that BRK variance estimates be computed.

We note that some of the variance estimates are based on relatively few schools: some of the estimates have as few as 20 degrees of freedom. These variance estimates are, of course, quite variable themselves-and this instability would remain a problem even if $B R R$ or JRR estimates had been used instead.

7.2 Approximate Sampling Errors

One may approximate the standard errors for statistics other than those shown in the Appendix by using the appropriate DEFT factors shown in tables 7.1 and 7.2 and the formulas described here. The DEFT factors are the square roots of the subclass-specific (sex, race, or region) design effects (DEFF), or:

$$
\text { DEFT }=\sqrt{D E F F}=\sqrt{\frac{\text { Actual design-specific variance }}{\text { SRS variance }}}
$$

The appropriate DEFT factor to use in the following formulas depends upon the type of statistic (percentage or mean), the cohort (sophomores or seniors), and the particular subclass (sex, race, or region) for which one is approximating the standard error.

7.2.1 Percentages

To approximate the standard error of a percentage, the following formula is applicable:

$$
\begin{equation*}
\operatorname{se}(P)=\operatorname{DEFT} \sqrt{P(100-P) / n} \tag{1}
\end{equation*}
$$

where:
se(P) = the approximate standard error for the percentage P;
DEFT = the appropriate DEFT factor for the particular demographic subclass and grade cohort from which ine percentage was developed, as shown in table 7.1;

P - the eample percentage (ranging frov 0 to 100);

Table 7.1.--DEFT factors for percentages: sophomores and seniors

Subclass	Sophomores (20)		Seniors (22).	
	Mean	Standard deviation	Mean	Standard deviation
All students	1.6593	. 3709	1.6140	. 3561
Males	1.4637	. 2706	1.4378	. 2457
Females	1.4385	. 2242	1.4384	. 2319
White	1.4385	. 3138	1.4514	. 2975
Black	1.4782	. 1921	1.4120	. 1764
Hispanic	1.5095	. 1715	1.5416	. 1699
Public	1.5991	. 3388	1.5350	. 3125
Catholic	1.8811	. 4339	1.9487	. 5352
Privatte	2.3660	. 9686	2.3108	1.0562
Low SES	1.3906	. 1476	1.3860	. 1601
Middle SES	1.3610	. 1818	1.3196	. 1788
High SES	1.2946	. 1895	1.3351	. 1820
Northeast	1.7465	. 4743	1.6520	. 4304
South	1.6559	. 3450	1.5936	. 3324
North Central . \therefore.........	1:5525	. 3370	1.5097	. 3204
West	1.6046	. 3813	1.6328	. 3600
General	1.4062	. 2095	1.3428	. 1868
Academic	1.4046	. 2457	1.4321	. 2591
Vocational	1.3644	. 1439	1.3116	. 1401

n - the actual unweighted sample size for the demographic subclass and grade cohort from which the percentage was developed.

7.2.2 Means

One can compute approximate standard errors for means as follows:

$$
\begin{equation*}
\operatorname{se}(\bar{x})=\operatorname{DEFT} \sqrt{\frac{s^{2}}{n}} \tag{2}
\end{equation*}
$$

where:
$s e(\bar{x})$ - the approximate standard error of the mean \bar{x};
DEFT - the appropriate DEFT factor for the particular demographic subclass and grade cohort from which the mean was developed, as shown in table 7.2;
$S^{2} \quad$ - the weighted element variance computed for the demographic subclass and grade contort from which the mean was developed;
n-the unweighted sample size for the particular mean.

7.2.3 Differences

The general formula for calculating the variance of a difference between x and y is:

$$
\begin{equation*}
\operatorname{Var}(y-x)=\operatorname{Var}(y)+\operatorname{Var}(x)-2 \operatorname{Cov}(x, y) \tag{3}
\end{equation*}
$$

where:
Var (y) the variance of one estimate;
$\operatorname{Var}(x)$ the variance of the second estimate;
$\operatorname{Cov}(x, y)=$ the covariance of the two estimates.
For estimates involving different schools, such as comparisons between two types of school, the covariance can be assumed to be zero. In that case,

Table 7.2.-DEFT factors for means: sophomores and seniors

Subclass	Sophomores (15)		Seniors (16)	
	Mean	Standard deviation	Mean	Standard deviation
All students	1.6398	. 4403	1.5757	. 3963
Males	1.3310	. 2677	1.3045	. 2552
Females	1.3881	. 2667	1.3889	. 2836
White	1.3349	. 2761	1.3443	- 3206
Black	1.3878	. 3194	1.3707	. 3021
Bispanic :	1.2702	.2115	1.3158	. 2134
Public	1.5870	. 4367	1.5157	. 3907
Catholic	1.8151°	. 3985	1.6420	. 4744
Private	2.2932	. 8230	2.1999	. 5741
Low SES	1.2180	. 2254	1.2996	. 3017
Kiddle sts	1.1887	. 1960	1.2092	. 2589
Eigh SES	1.2011	. 2375	1.2168	. 2585
Mortheast	1.7837	. 5839	1.5265	. 3645
South	1.5416	. 4449	1.6894	. 5207
rth Central	1.4395	. 3523	1.4195	. 3755
二at	1.7001	. 4742	1.6013	. 3445
General	1,2655	. 2691°	1.2531	. 2961
Acadenic	1.3562	. 2706	1.3387	. 2655
Vocational	1.2191	. 2336	1.1801	.2183

the variance of the difference between two estimates is just the sum of the variances of the two estimates.

Equation 3 applies both to differences between means and differences between percentages. Thus, one can ap-roximate the standard error of a difference by calculating approximate standard errors for the two estimates being compared (using equation 1 on page 167 for percentages and equation 2 for means), squaring these standard errors, and then applying equation 3. The approximate standard error of a difference is the square root of the variance (as given in equation 3). Equation 3 can only be applied where we have an estimate of the covariance or where we can assume the covariance to be zero. The covariance will be zero when the difference being estimated involves different schools-such as comparisons between schools of different types or in different regions of the country.

7.3 Sowe Highlights

We note that the design effects are very similar for the sophomores and seniors. As a practical matter, it will not make much difference which set of DEFT factors are used in calculating approximate standard errors.

We also note that the design effects for this survey appear to be somewhat larger than the corresponding design effects in the NCES 1972 National Longitudinal Survey. There are several possitis explanations for. this difference. First of all, the design effects for this study were based on more variables than those reported in the 1972 NLS. New variablea were added in calculacing the design effects and some of the origina: variables were dropped (because they had been dropped from the questionnaire or had been altered). The difference in the design effects may simply reflect the difference in the variables used to calculate them. Second, the design effects reported for the 1972 NLS are actually estimated from results from the

Third Followup Survey. By then, most of the respondents from the original survey had graduated from high school. The populations of the two surveys thus differ and this may account for the difference in the design effects. Whatever the explanation for this difference, the design effects for both surveys are within the range commonly observed in surveys of this sort.

We note, finally, that the private schools and, to a lesser extent, the Catholic schools show higher design effects than the other subgroups in tables 7.1 and 7.2. This does not necessarily imply that estimates for these subgroups are more variable, only that they are less efficient than for other subgroups. This relatively greater inefficiency probably reflects the greater variability of the weights attached to the private schools (many but not all of which were selected with certainty) and the greater homogeneity of students at private and Catholic schools.

APPENDIX

ESTIMATES, STANDARD ERRORS, AND DESIGN EFFECTS FOR SELECTED SURVEY ITEMS

$$
A-1
$$

VARIABLE IDENTIFIERS FROM HS\&B CODEBOOK

Lab		HS\&B Item Number
Sophomores		
1	PROP WORKED LT 15 HRS./WR	149
2	PROP EARNED LT \$1000	376
3	PROP 'SUCCESS IN WORK VERY IMPORTANT'	294
4	AVE ATT TO SELF	306
5	ave att to planning	311
6	ave importance of prox to parent	301
7	AVE BOTH MATH NOT ATTEMPTED	610
8	PROP MT 3 HRS ON HOMEWORK	128
9	PROP LT B AVERAGE	085
10	PROP MT 3.50 MIN WAGE	160
11	PROP FATHER NOT US NATIVE	210
12	AVE QUALITY OF INSTRUCTION	285
13	AVE 'SOMEONF PREVENTS SUCCESS'	310
14	PROP NEVER CUT CLASS	335
15	PROP HARD OF HEARING	410
16	PROP W/NO PLACE TO STUDY	435
17	PROP NOT Planking on college	460
18	PROP ABSENT MT 2 day	132
19	PROP DID NOT WORR LAST WR	146
20	PROP NOT LOOKING FOR WORR	147
21	PROP WHOSE MOM FINISHED COLLEGE	212
22	PROP-GOOD LUCK NOT IMPORTANT	307
23	PROP FEEL PROUD	317
24	PROP EXPECT TO FINISH COLLEGE	353
25	PROP W/HANDICAP	408, 410-414
26	PROP W/VOCATIONAL PROGRAM	017
27	ave both reading test - rigit	603
28	AVE bOTH VOCAB TEST - KIGHT	598
29	aVE both math test - Right	608
30	AVE CIVICS test - RIGHT	548
31	ave reading test - RIGHT	523
32	ave science test - RIGHT	538
33	ave vocab test - RIght	518
34	AVE WRITING TEST - RIGHT	543
35	AVE EARNING/HR	150

$$
A-2
$$

variable identifiers from hsab Codebook (Continued)

Lab		HS\&B item number
Seniors		
1	PROP WORKED LT 15 HRS./WK	149
2	PROP EARNED LT \$1000	376
3	PROP W/LT \$1000 EXPENSES	377
4	PROP ACCEPTED IN ARMED FORCES	180
5	PROP 'SUCCESS IN WORK VERY IMPORTANT'	294
6	ave att to self	306
7	ave att to planning	311
8	ave importance of prox to parent	301
9	AVE SEN VOCAB NOT ATTEMPTED	560
10	AVE BOTH MATH NOT ATTEMPTED	610
11	PROP MT 3 HRS ON HOMEWORK	128
12	PROP LT B AVERAGE	085
13	PROP MT 3.50 MIN WAGE	160
14	ave att to school counseling	185
15	PROP FATHER NOT US NATIVE	210
16	AVE QUALITY OF INSTRUCTION	285
17	AVE 'SOMEONE PREVENTS SUCCESS'	310
18	PROP NEVER CUT CLASSES	335
19	PROP EARD OF HEARING	410
20	PROP W/NO PLACE TO STUDY	435
21	PROP NOT PLANNING ON COLLEGE	460
22.	PROP ABSENT MT 2 days	132
23	PROP DID NOT WORK LAST WK	146
24	PROP NOT LOORING FOR WORR	147
25	PROP WHOSE MOM FINISHED COLLEGE	212
26	PROP-GOOD LUCR \%OT IMPORTANT	307
27	PROP FEEL PROUD	317
28	PROP EXPECT TO FINISH COLLEGE	353
29	PROP W/HANDICAP	408, 410-414
30	PROP W/VOCATIONAL PROGRAM	017 -
31	ave both reading test - right	603
32	ave both vocab test - right	598
33	AVE BOTH MATH TEST - RIGHT	608
34	AVE MOSAIC (1) TEST - RIGHT	583
35	ave picture test - right	578
36	AVE READING test - RIGHT	563
37	AVE VISUAL tEST - RIGET	593
38	AVE EARNIMG/ER	150

SOPHOMORE ESTIMATES

222

NAME=ALL

note: summary statistics above exclude zero values

CV
DEFF
DEFT

PROP WORKED LT 15 HRS./WK PROP EARNED LT \$1000
PROP 'SUCCESS IN WORK VERY IMPOR AVE ATT TO SELF
aVE ATT TO PLANNING
aVE Importance of prox to parent
AVE BOTH MATH NOT A?TEMPTED
PROD MT 3 HPS UN HOMEWORK PROP LT 8 AVERAGE PROP MT 3.50 MIN WAGE PROP FATHER NOT US NATIVE AVE QUALITY OF INSTRUCTION aVE 'SOMEDNE PREVENTS SUCCESS' PROP NEVER CUT CLASSES PROP HARD OF HEARING PROP W/ NO PLACE TO STUDY PROP NOT PLANNING ON COLLEGE PROP ABSENT MT 2 JAYS PROP DIO NOT WORK, LAST WK PROP NOT LOOKIN, FOR WORK PROP WHOSE MOM FINISHED COLLEGE
PROP- GODD LUEK NOT IMPORTANT PROP FEEL PROUD PROP EXPECT TO FINISH COLLEGE PROP W/ HANDICAP
PROP W/ VOCATIONAL PROGRAM
AVE BOTH READING TEST- RIGHT
AVE BOTH VOCAB TEST- RIGHT
AVE BOTH MATH TEST - RIGHT
AVE CIVICS TEST-RIGHT
AVE READING TEST-RIGHT
AVE SCIENCE TEST-RIGHT AVE VOCAB TEST- RIGHT AVE WRITING TEST- RIGHT AVE EARNING/HR

0.5836	0.00572
0.4509	000613
0.1258	0.00318
1.7133	0.00654
2.9188	000959
1.9486	0.00750
0.2659	001348
0.4498	0.00694
0.5939	000642
0.6851	0.00548
0.1509	000489
2.7102	0.01391
2.7144	0.00881
0.6808	0.00653
0.0062	0.00079
0.4891	0.00601
0.3862	0.00699
0.3507	0.00568
0.5562	0.00586
0.7312	000474
0.1568	000572
0.8251	0.00446
0.8314	0.0040
0.4031	0.00731
0.1612	0.00428
0.2120	0.00725
3.7331	0.02938
3.8656	0.02953
9.9649	0.06880
5.8311	0.03143
9.3647	0.05844
11.6363	0.06340
112952	006892
9.5633	0.06357
2.9197	0.01141

2.9197

000980
0.01360
0.02525
0.00382
0.00329
0.00385
0.05068
0.01542
0.01080
0.00799
0.03241
0.00513
0.00325
0.00959
0.00959
0.12798
0.01229
0.01809

0.01861	2.8519	1.6398
0.01619	1.9020	1.3791
0.01054	1.8591	1.3635
0.00648	1.5078	1.2279

$0.00648 \quad 1.5078 \quad 12279$
$003647 \quad 4.0572 \quad 2.0142$
$000540 \quad 1.3137 \quad 1.1462$
$0004891.1411 \quad 1.0682$
$\begin{array}{lll}0.01813 & 3.0126 & 1.7357\end{array}$
$0.02656 \quad 1.9758 \quad 1.4056$
$\begin{array}{lll}0.03419 & 4.2741 & 2.0674\end{array}$
$0.00787 \quad 2.3419 \quad 1.5303$
$0.00764 \quad 2.5587 \quad 15996$
$\begin{array}{lll}0.00690 & 2.6182 & 1.6181\end{array}$
$0.00539 \quad 1.7875 \quad 1.3370$
$\begin{array}{lll}0.00624 & 2.1542 & 1.4677 \\ 0.00545 & 2.1160 & 1.4546\end{array}$
$\begin{array}{lll}0.00545 & 2.1160 & 1.4546 \\ 0.00610 & 2.3400 & 1.5297\end{array}$
$0.00665 \quad 2.3560 \quad 1.5349$
$000391 \quad 1.1104 \quad 1.0537$

MEAN

0.01623	2.0520	1.4069
0.00799	19758	1.4056
0.02244	0.7875	0.2736

note summary statistics above exclude zero values

	SUMMARY TABLE FOR	SUBCLASS NO	3	NAME =FEMALES		
STAT NO	STATISTIC	VALUE	$S E$	CV	DEFF	DEFT
1	PROP WORKED LT 15 HRS./WK	0.7536	0.00472	0.00626	1.7021	1.3047
2	PROP EARNED LT $\$ 1000$	0.6615	0.00575	0.00869	2.0752	1.4406
3	PROP 'SUCCESS IN WORK VERY IMPOR	0.1356	0.00346	002553	14973	12236
4	AVE ATT TO SELF	1.8906	0.00788	0.00417	1.2529	11193
5	AVE ATT TO PLANNING	30246	0.00898	0.00297	0.9106	09543
6	AVE IMPORTANCE DF PROX TO PARENT	1.9660	0.00713	0.00363	1.4669	1.2111
7	AVE BOTH MATH NOT ATTEMPTED	02739	0.01205	0.04399		14797
8	PROP MT 3 HRS ON HOMEWORK	05792	0.00626	0.01081	2.3307	1.5267
9	PROP LT B aVERAGE	0.4835	0.00596	001232	2.0631	1.4363
10	PROP MT 3.50 MIN WAGE	0.5387	0.00589	001094	2.0226	1.4222
11	PROP FATHER NOT US NATIVE	0.1735	0.00479	0.02758	23542	1.5343
12	AVE OUALITY OF INSTRUCTION	2.7293	0.01309	0.00480	1.7482	1.3222
13	AVE 'SOMEONE PREVENTS SUCCESS'	2.7860	000792	000284	0.7205	0.8488
14	PROP NEVER CUT CLASSES	0.7166	0.00651	0.00908	2.9520	1.7181
15	PROP HARD OF HEARING	0.0028	0.00047	0.16903	1.2591	1.1221
16	PROP W/ NO PLACE TO STUDY	0.5533	0.00527	0.00952	1. 6156	1.2711
17	PROP NOT PLANNING ON COLLEGE	0.3282	000590	0.01797	2:3645	1.5377
18	PROP ABSENT MT 2 DAYS	0.3389	0.00525	0.01548	1.7874	1.3369
19	PRRP DID NOT WORK LAST WK	0.5975	000583	0.00975	2.0462	1.4305
20	PROP NOT LOOKING FOR WORK	0.7730	0.00447	0.00578	1.6375	1.2796
21	PROP WHOSE MOM FINISHED COLLEGE	0.1361	000516	0.03794	3.8684	1.9668
22	PROP- GOOD LUCK NOT IMPORTANT	0.8704	0.00419	0.00481	1.5398	1.2409
23	PROP FEEL PROUD	0.8587	0.00377	000439	1.2122	1.1010
24	PROP EXPECT TO FINISH COLLEGE	0.4237	0.00643	0.01517	2.4740	1.5729
25	PROP W/ HANOICAP	0.1415	0.00404	0.02851	2.1069	1.4515
26	PROP W/ VOCATIONAL PROGRAM	0.1907	000600	0.03146	3.4316	1.8525
27	AVE BDTH READING TEST- RIGHT	3.7631	002796	0.00743	2.4451	1.5637
28	AVE BOTH VOCAB TEST- RIGHT	3.8428	0.03000	0.00781	2.9906	1.7293
29	AVE BOTH MATH TEST- RIGHT	9.4836	0.06009	0.00634	25719	16037.
30	AVE CIVICS TEST-RIGHT	5.9820	002893	0.00484	1.7752	$1.3324{ }^{\circ}$
31	AVE READING TEST- RIGHT	9.1315	0.05595	0.00613	2.3851	1.5444
32	AVE SCIENCE TEST- RIGHT	10.6014	0.05945	0.00561	2.5084	1.5838
33	AVE VOCAB TEST-- RIGHT	10.9093	0.07225	0.00662	2.9330	1.7126
34	AVE WRITING TEST- RIGHT	11.3177	0.06169	0.00545	2.3732	1.5405
35	AVE EARNING/HR	2.1822	0.01240	0.00568		1.2760
MEAN				0.01655	2.0640	14169
MEDIAN				0.00781	2.0631	1.4363
STANDAR	D DEVIATION			0.02851	0.6826	0.2409

NOTE: SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES
value

PROP WORKED LT 15 HRS./WK PROP EARNED LT $\$ 1000$ PROP 'SUCCESS IN WORK VERY IMPOR AVE ATT TO SELF
ave att to planning
AVE IMPORTANCE OF PRDX TD PARENT
AVE BOTH MATH NOT ATTEMPTED
PROP MT 3 HRS DN HOMEWORK
PROP LT 8 AVERAGE
PROP MT 3.50 MIN WAGE
PROP FATHER NOT US NATIVE
aVE QUAI.ITY OF INSTRUCTION
AVE 'SOMEONE PREVENTS SUCCESS'
PROP NEVER CUT CLASSES
PROP HARD OF HEARING
PROP W/ NO PLACE TO STUDY
PROP NOT PLANNING ON COLLEGE
PROP ABSENT MT 2 DAYS
PROP DID NOT WORK LAST WK
PROP NOT LOOKING FOR WORK
PROP WHOSE MDM FINISHED COLLEGE
PROP- GOOD LUCK NOT IMPORTANT
PROP FEEL PROUD
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANOICAP
PROP W/ VOCATIONAL PROGRAM
AVE BOTH READING TEST- RIGHT
AVE BDTH VOCAB TEST- RIGHT
AVE BOTH MATH TEST- RIGHT
AVE CIVICS TEST-RIGHT
AVE REAOING TEST- RIGHT
AVE SCIENCE TEST- RIGHT
AVE VDCAB TEST- RIGHT
AVE WRITING TEST- RIGHT
AVE EARNING/HR
$0.6751 \quad 0.00467$

0.6751	0.00467
0.5751	0.00554
0.1314	0.00283
1.8491	0.00562
3.0234	0.00764
1.9502	0.00647
0.2233	0.01086
0.5426	0.00624
0.4884	0.00562
0.5888	0.00536
0.1040	0.00299
2.7471	001229
2.7884	0.00737
0.7210	0.00597
0.0034	0.00048
0.5282	0.00501
0.3525	0.00631
0.3197	0.00474
0.5519	0.00512
0.7724	0.00392
0.1551	0.00539
0.8904	0.00289
0.8701	0.00291
0.4249	0.00665
0.1276	000329
0.1674	0.00552
4.0815	0.02429
4.1591	0.02686
10.5118	0.05435
6.1905	0.02583
9.9640	004814
11.9548	0.04503
119948	005881
11.2431	005065
2.5036	001171

NAME = WHI TE
CV DEFF DEFT

0.00691	1.7144	1.3094
0.00963	2.1739	1.4744
0.02152	1.2414	1.1142
0.00304	0.8215	0.9063
0.00253	0.7548	0.8688
0.00332	1.4019	1.1840
0.04866	2.6647	1.6324
0.01150	2.7356	1.6540
0.01151	2.2069	1.4856
0.00911	2.0585	1.4347
0.02878	17022	1.3047
0.00447	2.0510	1.4321
0.00264	0.7247	0.8513
0.00828	2.9487	1.7172
0.14295	1.3240	1.1507
0.00948	1.7514	1.3234
0.01790	3.1793	1.7831
0.01482	1.8045	1.3433
0.00927	18454	1.3585
0.00508	1.5019	1.2255
0.03478	4.4326	2.1054
0.00325	0.9071	0.9524
0.00335	0.8819	0.9391
0.01565	3.1726	17812
0002579	1.8292	1.3525
003297	3.8440	1.9606
0.00595	2.1912	1.4803
0.00646	2.9308	1.7120
0.00517	2.4553	1.5669
000417	1.7702	1.3305
0.00483	2.0917	1.4463
0.00377	1.7629	1.3277
0.00490	2.5315	1.5911
0.00450	2.0639	1.4366
0.00468	15802	1.2571

ME AN
MEDIAN
STANDARD UEVIATION

001519	20300	1.3941
000691	1.8454	1.3585
0.02475	0.8513	0.2985

[^5]

[^6]SUMMARY TABLE FDR SUBCLASS NO. 6
STAT NO
STATISTIC
value

SE

PROP WORKED LT 15 HRS./WK
PROP EARNED LT $\$ 1000$
PROP 'SUCCESS IN WORK VERY IMPOR
AVE ATT. TO ṠELF
AVE ATT TO PLANNING
AVE IMPORTANCE OF PROX TO PARENT
AVE BOTH MATH NOT ATTEMPTED PROP MI 3 HRS ON HOMEWORK PROP LT B AVERAGE PRDP MT 350 MIN WAGE PROP FATHER NDT US NATIVE AVE OUALITY OF INSTRUCTION AVE 'SOMEONE PREVENTS SUCCESS' PROP NEVER CUT CLASSES PROP HARD OF HEARING PROP W/ NO PLACE TO STUDY PROP NOT PLANNING ON COLLEGE PROP ABSENT MT 2 DAYS PROP OIO NOT WORK LAST WK PROP NOT LOOKING FOR WORK PROP WHOSE MOM FINISHED COLLEGE PRDP - GOOO LUCK NOT IMPORTANT PRDP FEEL PROUO
PROP EXPECT TO FINISH COLLEGE PROP W/ HANDICAP PROP W/ VOCATIONAL PROGRAM AVE BOTH READING TEST- RIGHT AVE BOTH VDCAB TEST- RIGHT AVE BOTH MATH TEST- RIGHT AVE CIVICS TEST-RIGHT AVE READING TEST- RIGHT AVE SCIENCE TEST-RIGHT AVE VOCAB TEST- RIGHT AVE WRITING TEST• RTGHT AVE EARNING/HR
0.6254 0.525 0.148 1.7827 2.7809 2.0620 0.3655 0.4279 0.6736 0.6551 0.3959 2.6396 26679 0.6472 0.0103
0.378
0.443

06354
0.7117
0.0772
0.7395
0.7719
0.3278
0.2041
0.2875

28347
3.0284
7.6305
5.0112
7. 1842
8.8509

86993
82767
27141
0.01193
0.01205 .
0.00966 0.01540 0.02156 0.01668 0.02822 0.01221 001085 0.01116 0.01583 0.02336 0.01979 0.01248 0.00225 0.01346 001306 0.01181 0.01089 0.01045 0.00690 0.01157 0.01052 0.01081 001075 001317 0.05073 005090 0.09291 005250 0.09168 0. 10070 0.12356 0.10234 0.02416

NAME =HISPANIC
CV DEFF DEFT
$\begin{array}{lll}0.01907 & 2.1170 & 1.4550 \\ 0.02293 & 2.0413 & 1.4287\end{array}$
$0.06484 \quad 2.7084 \quad 1.6457$
$0.00864 \quad 1.0823 \quad 1.0403$
$0.00775 \quad 1.0316 \quad 1.0157$
$0.00809 \quad 1.4261 \quad 1.1942$
0.07 .72323951 .4955
$0.02853 \quad 2.1484 \quad 1.4657$
$1.8632 \quad 1.3650$
$0.01704 \quad 1.8984 \quad 1.3778$
$0.03999 \quad 3.7325 \quad 1.9320$
$0.00885 \quad 1.1906 \quad 1.0911$
$0.00742 \quad 0.9219 \quad 0.9602$
$0.01928 \quad 2.2692 \quad 1.5064$
$0.21948 \quad 1.9252 \quad 1.3875$
$0.02419 \quad 2.5625 \quad 16008$
$0.03451 \quad 2.7787 \quad 1.6669$
$0.02660 \quad 19886 \quad 1.4102$
$0.01714 \quad 1.7879 \quad 1.3371$
1.3607
3.12841 .7687
0.01362
$0.03298 \quad 19185 \quad 1.3851$
$0.05265 \quad 2.6767 \quad 1.6361$
$0.04582 \quad 3.0335 \quad 17417$
$0.01790 \quad 2.4795 \quad 1.5747$
$0.01681 \quad 2.4654 \quad 1.5702$
$0.01218 \quad 1.7084 \quad 1.3071$
$0.01048 \quad 1.4423 \quad 1.2010$
$0.01276 \quad 1.8839 \quad 1.3726$
$0.01138 \quad 1.6854 \quad 1.2982$
$0.01420 \quad 23613 \quad 15366$
$001236 \quad 1.7988 \quad 1.3412$
$0.00890 \quad 1.10821$ 10527

0.02998	2.0274	1.4070
0.01704	1.9252	13875
0.03850	0.6279	0.2220

note: Summary statistics above Exclude zero values

PROP EARNED LT $\$ 1000$
PROP 'SUCCESS IN WORK VERY IMPOR

0	
0.6628	000404
0.5516	000470
0.1322	000253
1.8035	0.00577
2.9567	000735
1.9577	0.00529
0.2927	0.01161
0.4879	0.00531
0.5616	0.00506
0.6142	0.00465
0.1706	0.00433
2.6712	001107
2.7332	0.00629
0.6850	0.00579
0.0050	0.00350
0.5349	000430
0.3743	0.00548
0.3618	000444
0.5792	000454
0.7456	000369
0.1284	000408
0.8392	0.00348
0.8399	0.00297
0.3833	000545
0.1558	0.00323
0.2261	0.00610
3.6028	0.02525
3.6887	0.02588
9.3954	0.05849
5.7649	0.02659
8.9248	0.05134
10.8173	0.06024
10.6821	0.06504
10.1145	005814
2.5597	000960

NOTE: SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

STAT NO
Statistic
Value SE

1	PROP WORKED LT 15 HRS./WK
2	PRRP EARNED LT \$1000
3	PROP 'SUCCESS IN WORK VERY IMPOR
4	ave att to self
5	AVE ATT TO PLANNING
6	AVE ImPORTANCE OF PROX TO PARENT
7	AVE BOTH MATH NOT ATTEMPTED
8	PROP MT 3 HRS ON HOMEWORK
9	PROD LT B AVERAGE
10	PROP MT 3.50 MIN 'Wage
11	PRUP FATHER NOT US NATIVE
12	AVE OUALITY OF INSTRUCTION
13	AVE 'SOMEONE PREVENTS SUCCESS'
14	Prop never cut ciasses
15	PROP HARD OF HEARING
16	PROP W/ No place to Stuoy
17	PROP NOT PLANNING ON COLLEGE
18	PROP ABSENT MT 2 days
19	PROP DIO NOT WORK LAST WK
20	PROP NOT LOOKING FOR WORK
21	PROP WHOSE MOM FINISHEP COLLEGE
22	PROP- GOOO LUCK NOT IMRGRTANT
23	PROP FEEL PROUD
24	Prop expect to finish College
25	PRROP W/ HANOICAP
26	PROP W/ VOCATIONAL PROGRAM
27	AVE BOTH READING TEST- RIGHT
28	AVE BOTH VOCAB TEST- RIGHT
29	AVE BOTH MATH TEST- RIGHT
30	AVE CIVICS TEST-RIGHT
31	AVE READING TEST- RIGHT
32	AVE SCIENCE TEST- RIGHT
33	AVE VOCAB TESt- RIGHT
34	AVE WRITING TES'T- RIGHT
35	ave earning/hr

AVE ATT 10 PLANNING
AVE IMPORTANCE OF PROX TO PARENT
AVE BOTH MATH NOT ATTEMPTED
PROP MT 3 HRS ON HOMEWORK
PROD LT B AVERAGE
PROP MT 3.50 MIN'WAGE
PRUP FATHER NOT US NATIVE
aVE OUALITY OF INSTRUCTION
AVE SOMEONE PREVENTS SUCCESS'
prop never cut ciasses
PROP HARD OF HEARING
PROP W/ NO PLACE TO STUOY
prop not planning on college PROP ABSENT MT 2 DAYS PROP OIO NOT WORK LAST WK PROP NOT LOOKING FOR WORK FROP WHOSE MOM FINISHEP COLLEGE PROP- GOOO LUCK NOT IMRQRTANT PROP FEEL PROUD prop expect to finish college PROP W/ HANDICAP PROP W/ VOCATIONAL PROGRAM
aVE BOTH READING TEST- RIGHT
ave both vocab test- Right
aVE BOTH MATH TEST- RIGHT
AVE CIVICS TEST-RIGHT
aVE READING TEST- RIGHT
AVE SCIENCE TEST- RIGHT
aVE VOCAB TEST- RIGHT
AVE WRITING TES'T- RIGHT
aVE EARNING/HR

0.7656	0.01393
0.5961	0.01847
0.1180	0.00819
1.8105	0.01711
3.0709	0.02481
2.0401	0.02321
0.2100	0.01929
0.7116	0.01916
0.4320	0.01986
0.6158	0.01793
0.1404	0.01237
3.1017	004807
2.8703	0.02559
0.8871	0.01384
0.0024	0.00111
0.4362	0.01726
0.1811	0.01765
0.1905	0.01172
0.5518	0.01855
0.7883	0.01116
0.2367	0.02091
0.9065	0.00955
0.8720	0.00998
0.6305	0.02337
0.1093	0.00952
0.0583	0.00841
4.3352	0.07829
45887	0.08090
11.0485	0.16317
6.5289	0.07561
10.4995	0.15400
118844	0.15125
12.8937	0.18285
11.9078	0.14944
2.5189	0.04922

NAME =CATHOLIC

cV	OEFF	DEFT
\%		
0.01819	2.9562	1.7194
0.03098	3.9253	1.9612
0.06942	1.8238	1.3505
0. ${ }^{\circ} 0945$	1.3743	1.1723
0.00808	1.4129	1. 1887
0.01138	3.0503	17465
009184	1.9954	1:4126
0.02692	4.9860	2.2329
0.04597	4.5156	2. 1250
0.02911	3.7803	1.9443
008808	3.5921	1.8953
0.01550	6.2065	24913
0.00892	1.4235	1.1931
001560	4.7442	2.1781
0.45561	1.5844	1. 2587
0.03957	3.4663	18618
0.09748	6.3073	2.5114
006153	2.5034	1.5822
0.03361	3.9005	1.9750
0.01416	2.0657	1.4373
0.08833	7.7121	2.777
0.01054	1.7331	1.3165
0.01145	1.7682	1.3297
0.037 Cb	6.4812	2.5458
0 OF	2.8647	1.6925
0 小	3.6388	1.9078
0.01606	4.0141	2.0035
061763	4.5012.	21216
001477	4.4099°	2. 1000
0.01158	3.1628	1.7784
0:01467	3.9589	1.9897
0.01273	$4.0-54$	2.0138
0.01418	4.3678	20947
001255	3.6582	19126
001954	4.0304	2.0076
004816	3.5997	1.8528
001819	36582	19126
007846	15582	04144

[^7]230
value
0.6773
0.6830
0.1470

0.02947

 004177 0.01220 003282 0.04536 $\begin{array}{ll}1.8726 & 0.04595 \\ 0.3043 & 0.06860\end{array}$ 0.7231 0.4355 0.57990.1540
3.0556 2.3260 01118 0.0 0.3647 0.2124
0.3053 0.6170
0.8013 $0.3730 \quad 0.05673$ 0.90820 .01012 $0.9160 \quad 0.01297$ 0.6071 - 0.06120 $0.1499 \quad 0.02523$ $\begin{array}{ll}0.0549 & 0.02735 \\ 4.3384 & 0.19177\end{array}$ 4.80140 .32359 $11.3156 \quad 0.52234$ 6.4079020103 $10.5586 \quad 0.39667$ $12.4438 \quad 043521$ 13.1728 072728
11.5511050979
2.65830 .07889

NAME =PRIVATE

CV	OEFF	OEFT
0.04351	3.8094	1.9518
0.07164	6.9376	26339
0.08297	1. 1959	1.0936
0.01843	14922	1. 2215
0.01469	1.4367	1. 1986
0.02454	3.5438	18825
0.22541	4.7649	21829
0.05756	8.2742	2.8765
0.09329	6.6031	2. 5696
006090	4.9643	2.2281
0.13836	3.4529	1.8582
003529	8.5705	2.9275
0.01301	0.9118	0.9549
0.03875	3.4173	1.8486
0.0	0.0	0.0
0.10158	6.0434	2.4583
022763	*****	3.8446
0.10137	4.4444	21082
0.06352	6.3532	2.5206
0.02158	1.8069	1. 3442
0.15211	******	38598
0.01115	0.6168	0.7854
0.01416	1.0234	1.0116
0.10081	*****	38797
0. 16830	5.3103	2.3044
0.49777	******	3.7762
0.04420	5.7446	2.3968
0.06739	*****	3.8813
0.04616	8.0313	2.8340
0.03137	4.2292	2.0565
0.03757	5.2444	2. 2901
0.03497	5.5519	2.3562
005521	******	3.4989
0.04413	7.9174	2.8138
0.02968	3.6198	1. 9026
008144	6.2238	23339
0.05069	5.2774	2.2972
0.09259	4.4292	0.8947

| MEAN | 008144 | 6.2238 | 2339 |
| :--- | :--- | :--- | :--- | :--- |
| MEOIAN | 0.05069 | 5.2774 | 2.2972 |
| SIANOARO OEVIAIION | 0.09259 | 4.4292 | 0.8947 |

note, summary statistics above excluoe zero values

note. summary statistics above exclude zero values

PROP	WORKEO LT 15 HRS./WK	0.6609	0.00535
PROP	EARNEO LT \$1000	0.5435	0.00595
PROP	'SUCCESS IN WORK VERY IMPOR	0.1305	0.00332
AVE	att TO SELF	1.8148	0.00692
AVE	ATT TO PLANNING	2.9794	000890
AVE I	IMPORTANCE OF PROX TO PARENT	1.9683	0.00732
AVE E	BOTH MATH NOT ATTEMPTEO	0.2773	001351
PROP	MT 3 HRS ON HOMEWORK	0.5059	0.00617
PRRP	LT B average	05492	0.00573
PROP	MT 3.50 MIN WAGE	0.6098	0.00590
PROP	FATHER NOT US NATIVE	0.1387	000473
AVE	OUALITY OF INSTRUCTION	2.7031	0.01185
AVE	'SOMEONE PREVENTS SUCCESS'	2.7496	0.00761
PROP	NEVER CUT CLASSES	0.6978	0.00670
PROP	HARD OF HEARING	0.0047	0.00069
PRDP	W/ NO PI_ACE TO STUDY	0.5364	0.00521
PROP	NOT PLANNING ON COLLESE	0.3619	0.00558
PROP	ABSENT MT 2 DAYS	0.3330	0.00559
PROP	DIO NOT WORK LAST MK	0.5559	0.00576
PROP	NOT LOOKING FOR VORK	0.7544	0.00477
PROP	WHOSE MOM FINIS'HED COLLEGE	0.0554	0.00258
PRROP -	- GOOD LUCK NOT IMPORTANT	0.8581	0.00396
PROP	FEEL PROUD	0.8526	0.00385
PROP	EXPECT TO INISH COLLEGE	0.3733	0.00561
PROP	W/ HANDICAP	01395	0.00413
PROP	W/ VOCATIONAL PROGRAM	0.2094	0.00647
AVE	BOTH REAOING TEST- RIGHT	3.7309	002381
AVE B	BOTH VOCAB TEST- RIGHT	3.8165	002287
AVE B	BOT'A MATH TEST- RIGHT	9.6991	0.05242
AVE C	CIVICS TEST-RIGHT	5.8885	0.02688
AVE R	REAOING TEST- RIGHT	9. 1955	0.04563
AVE S	SCIENCE TEST- RIGHT	11.1473	0.04932
AVE V	VOCAE TEST- RIGHT	11.0966	0.05464
AVE W	WRITING TEST- RIGHT	10.4693	0.05372
AVE E	EARNING/HR	2.5356	0.01200

value

$\begin{aligned} & \text { PROP } \\ & \text { PROP } \end{aligned}$	WORKEO LT 15 HRS. /WK EARNEO LT $\$ 1000$
PROP	- SUCCESS IN WORK VERY IMPOR
AVE	att TO SELF
AVE	ATT TO PLANNING
AVE I	IMPORTANCE OF PROX TO PARENT
AVE E	BOTH MATH NOT ATTEMPTEO
PROP	MT 3 HRS ON HOMEWORK
PROP	LT B average
PROP	MT 3.50 MIN WAGE
PROP	FATHER NOT US NATIVE
AVE	OUALITY OF INSTRUCTION
AVE	'SOMEONE PREVENTS SUCCESS'
PROP	NEVER CUT CLASSES
PROP	HARD OF HEARING
PRDP	W/ NO PI_ACE TO STUDY
PROP	NOT PLANNING ON COLLEGE
PROP	ABSENT MT 2 DAYS
PROP	DIO NOT WORK LAST MK
PROP	NOT LOOKING FOR WORK
PROP	WHOSE MOM FINISAED COLLEGE
PROP -	- GOOD LUCK NOT IMPORTANT
PROP	FEEL PROUD
PROP	EXPECT TO INISH COLLEGE
PROP	W/ HANDICAP
PROP	W/ VOCAIIIONAL PROGRAM
AVE 8	BOTH REAOING TEST- RIGHT
AVE B	BOTH VOCAB TEST- RIGHT
AVE B	BOT'A MATH TEST- RIGHT
AVE C	CIVICS TEST-RIGHT
AVE R	READING TEST- RIGHT
AVE S	SCIENCE TEST- RIGHT
AVE V	VOCAE TEST- RIGHT
AVE W	WRITING TEST- RIGHT
AVE E	EARNING/HR

MEAN
MEDIAN
STANQARO OEVIATION
NOTE: SUMmARY STATISTICS ABOVE EXCLUDE ZERO VALUES

001616	1.6973	1.2871
000810	1.6941	1.3016
0.02548	0.5316	02044

PROP WORKED LT
PROP EARNED LT $\$ 1000$
PROP 'SUCCESS IN WORK VERY IMPOR
AVE ATT TO SELF
AVE ATT TO PLANNING
AVE IMPORTANCE OF PROX TO PARENT
AVE EOTH MATH MOT ATTEMPTED
PROP MT 3 HRS ON HOMEWORK
PROP LT E AVERAGE
PROP MT 3.50 MIN WAGE
PROP FATHER NOT US NATIVE
AVE OUALITY OF INSTRUCTION
AVE 'SOMEONE PREVENTS SUCCESS'
PROP NEVER CUT CLASSES
PROP HARD OF HEARING
PROP W/ NO PLACE TO STUOY
PROP NOT PLANNING ON COLLEGE
PROP ABSENT MT 2 DAYS
PROP DID NOT WORK LAST WK
PROP NOT LOOKING FOR WORK
PROP WHOSE MOM FINISHED COLLEGE
PROP - GOOD LUCK NOT IMPORTANT
PROP FEEL PROUD
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANDICAP
PROP W/ VOCATIONAL PROGRAM
AVE BOTH REAOING TEST- RIGHT
AVE BOTH VOrab TEST- RIGHT
AVE BOTH MATH TEST- RIGHT
AVE CIVICS TEST-RIGHT
AVE READING TEST - RIGHT
AVE SCIENCE TEST- RIGHT
AVE VOCAB TEST- RIGHT
AVE WRITING TEST- RIGHT
AVE EARNING/HR
PROP 'SUCCESS IN WORK VERY IMPOR
000705
$\begin{array}{ll}0.5473 & 0.00832 \\ 0.0981 & 0.00411\end{array}$
0.0099
0.01520
0.01520
0.04189
1.6021
2657
$1.8904 \quad 13749$
0.00503
$1.3167 \quad 11475$
$0.9488 \quad 0.9741$
$\begin{array}{ll}0.9488 & 0.9741 \\ 0.6407 & 0.8004\end{array}$
0.00349
3.1530 0.01100
1.59741 .2639
0.00579
$1.8240 \quad 1.3506$
$\begin{array}{lllll}0.2013 & 0.01202 & 0.05973 & 1.8240 & 1.3506 \\ 0.6529 & 0.00951 & 0.01456 & 2.6913 & 1.6405 \\ 0.3842 & 0.00822 & 0.02140 & 1.9492 & 1.3961\end{array}$
$0.2013 \quad 0.01202$
0.05973
0.38420 .00822
0.02140
$\begin{array}{ll}.9492 & 1.3961 \\ .6691 & 1.2919\end{array}$
$\begin{array}{ll}.6691 & 1.2919 \\ .5623 & 1.2499\end{array}$
$\begin{array}{ll}1.5623 & 1.2499 \\ 2.4488 & 1.5649\end{array}$
$\begin{array}{ll}0.1217 & 0.00493 \\ 2.8802 & 0.01994\end{array}$
0.01218
0.04051
0567407532
$2.4310 \quad 1.5592$
$1.0996 \quad 1.0486$
$\begin{array}{ll}1.6700 & 1.2923 \\ 2.0571 & 1.4343\end{array}$
$1.5229 \quad 1.2341$
$\begin{array}{ll}.5229 & 1.2341 \\ .8570 & 1.3627\end{array}$
24331.1150

1. 1150
2.523715886
0.01999
+0.00502

1.6021	1.2657
1.8904	1.3749
1.3167	1.1475
0.9488	0.9741
0.6407	0.8004
1.5974	1.2639
1.8240	1.3506
2.6913	1.6405
1.9492	1.3961
1.6691	1.2919
1.5623	1.2499
2.4488	1.5649
0.5674	07532
2.4310	1.5592
1.0996	1.0486
1.6700	1.2923
2.0571	1.4343
1.5229	1.2341
1.8570	1.3627
1.2433	1.1150
2.5237	1.5886
0.9787	0.9893
0.8305	0.9113
1.8194	1.3488
1.7693	1.3301
1.7190	1.3111
1.6321	1.2775
2.5535	1.5980
1.5591	1.2486
1.2336	1.1107
1.4374	1.2237
1.4180	1.1908
1.9301	1.3893
1.2903	1.1359
1.2871	1.1345

0.02312	1.6180	1.2545
0.00997	1.6021	1.2657
0.04346	0.5236	0.2133

MEAN

NOTE: SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

SUMMARY TABLE FOR SUBCLASS NO -13^{-}, NAME=NORTHEAST
value

value	SE	CV	DEFF	DEFT
07125	000790	0.01108	1.8662	13661
0.6029	001084	0.01798	3.0161	1.7367
0. 1209	0.00508	0.04202	1.5565	12476
1.8094	0.01288	0.00712	1.4240	1. 1933
2.9311	0.01509	0.00515	0.9391	09691
1.9701	001188	0.00603	1.5107	12291
0.2542	001750	0.06884	2.2168	14889
0.5702	0.01207	0.02116	3.7000	19235
0.5064	0.01106	0.02185	3.0584	1.7488
0.6127	0.00973	0.01588	24583	1.5679
0.1832	0.01112	0.06070	5.2846	2.2988
2.7715	002469	000891	2.6760	1.6358
2.7885	0.01319	0.00473	0.7628	0.8734
06804	0.01144	0.01681	3.5959	1.8963
0.0029	000068	0.22991	1.0849	1.0416
0.5040	0.00845	001676	1.7980	1.3409
0.3400	0.01374	0.04041	5.5921	2. 3648
0.3516	0.00957	0.02723	2.5204	1.5876
0.5771	001064	- 001844	2.8907	1.7002
0.7415	0.00782	0.01055	1.9625	1.4009
0. 1717	001045	0.06087	5.8090	2.4102
0.8422	000771	0.00916	1.8861	1.3733
0.8475	0.00630	000743	1.3037	1.1418
0.4462	0.01378	0.03089	4.8538	2.2031
0.1522	0.00766 *	0.05037	3. 1109	1.7638
0.2231	001475	0.06609	7.9330	28166
3. 8691	0.06078	001571	4.5658	2. 1368
4.1033	0.07089	0.01728	6.3026	25105
10.0356	0.14742	001469	5.6325	2.3733
6.0606	0.06275	0.01035	3.0035	17331
9.4823	0.12605	'0.01329	4.5663	2. 1369
11.1913	0.15473	0.01383	5.8000	2.4083
11.6828	0.16789	0.01437	6.0025	2.4500
10.4872	0.14987	0.01429	54487	23342
2.4690	0.02042	0.00827	1.6450	12826
		-		
		0.02853	33651	1.7624
		001588	30035	1.7331
		0.03956	1.8795	05162

MEAN
PROP WORKEO LT 15 HRS./WK
PROP EARNEO LT \$1000
PROP 'SUCCESS IN WORK VERY IMPOR aVE ATt TO SELF
ave att to planning
ave importance of prox to parent
AVE BOTH MATH NOT ATTEMPTEO
PROP MT 3 HRS ON HOMEWORK
PROP LT B aVERAGE
PROP MT 350 MIN WAGE
PROP FATHER NOT US NATIVE aVE qUALITY OF INSTRUCTION AVE 'SOMEONE PREVENTS SUCCESS'
prop never cut classes
PROP HARO OF HEARING
PROP W/ NO PLACE TO STUOY
PROP NOT PLANNING ON COLLEGE
PROP ABSENT MT 2 OAYS
PROP DIO NOT WORK LAST WK
PROP NOT LOOKING FOR WORK
PROP WHOSE MOM FINISHEO COLLEGE
PROP- GOOD LUCK NOT IMPORTANT
PROP FEEL PROUO
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANOICAP
PROP W/ VOCATIONAL PROGRAM
aVE BOTH REAOING TEST- RIGHT
AVE BOTH VOCAB TEST- RIGHT
AVE BOTH MATH TEST- RIGHT
AVE CIVICS TEST-RIGHT
AVE REAOING TEST- RIGHT
AVE SCIENCE TEST- RIGHT
AVE VOCAB TEST- RIGHT
ave writing test- Right
AVE EARNING/HR
note: summary statistics above excluoe zero values

VALUE	SE
0.6627	0.00753
0.5511	000824
0.1259	0.00390
1.7682	001003
2.9203	001318
1.9580	000907
0.3384	0.02037
0.4569	000913
0.5687	000940
0.5969	0.00798
0.1786	0.00628
2.6818	0.01922
2.6745	0.01093
0.7495	0.00841
0.0055	000091
0.5250	000800
0.3678	000900
0.3398	000699
0.6155	0.00767
0.7585	000611
0.1198	000716
0.8131	000641
0.8349	0.00519
0.3917	000964
0.1652	0.00579
0.2425	0.01046
3.3410	004226
3.3860	004187
8.6167	0.09336
5.5199	004354
8.3412	0.08555
10.0825	009613
9.7862	0.11325
9.5638	0.09779
2.6179	0.01766

CV	DEFF	OEFT
001137	2.4272	1.5579
001496	26395	1.6246
003096	1. 3926	1. 1801
0.00567	1. 3205	1.1491
0.00451	1.0301	1.0149
0.00463	1. 2432	1.1150
0.06020	3.0463	1.7454
0.01997	3.2551	1.8042
0.01653	3.4786	18651
0.01337	2.5332	1.5916
0.03515	2. 6581	1.6304
000717	2.3043	1.5180
0.00409	0.7815	. 0.8840
0.01122	3.2231	1.7953
0.16707	1.6347	1. 2785
001523	2.5044	15825
0.02446	3.6588	19128
002058	21176	14552
0.01246	2.3947	1. 5475
0.00805	1.9301	13893
0.05973	5.8142	2.4113
0.00788	1.8858	1.3732
000621	1.3033	1.1416
0.02462	3.8390	1.9593
0.03502	2.5452	1.5954
0.04313	5.8669	2.4222
0.01265	3.8423	19602
0.01237	4.2389	2.0589
0.01084	4.1850	20457
000789	2.6699	1.6340
0.01026	3. 7855	19456
0.00953	4. 1045	2.0260
0.01157	4.9614	22274
0.01023	3.9741	19935
0.00675	1.7046	1. 3056
0.02161	2,8655	16498
001237	2.6395	16246
002904	1.2874	03848

note summary statistics above exclude zero values

NOTE. SUMMARY STATISTICS ABOVE EXCLUOE ZERO VALUES

SUMMARY TABLE FOR SUBCLASS NO. 15

STAT NO.
STATISTIC
value
SE
NAME =N CENTRAL

PROP WORKEO LT 15 HRS /WK
PROP EARNEO LT \$1000
PROP 'SUCCESS IN WORK VERY IMPOR
AVE ATT TO SELF
AVE ATT TO PLANNING
AVE IMPORTANCE OF PROX TO PARENT
AVE BOTH MATH NOT ATTEMPTED
PROP MT 3 HRS ON HOMEWORK
PROP LT 8 AVERAGE
PROP MT 3.50 MIN WAGE
PROP FATHER NOT US NATIVE
AVE QUALITY OF INSTRUCTION
AVE 'SOMEONE PREVENTS SUCCESS'
PROP NEVER CUT CLASSES
PROP HARD OF HEARING
PROP W/ NO PLACE TO STUDY
PROP NOT PLANNING ON COLLEGE
PROP ABSENT MT 2 DAYS
PROP DIO NOT WORK LAST WK
PROP NOT LOOKING FOR WORK
PROP WHOSE MOM FINISHED COLLEGE
PROP- GOOO LUCK NOT IMPORTANT
PROP FEEL PROUD
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANDICAP
PROP W/ VOCATIONAL PROGRAM
AVE BOTH READING TEST- RIGHT
AVE BOTH VOCAB TEST- RIGHT
AVE BOTH MATH TEST- RIGHT
AVE CIVICS TEST-RIGHT
AVE REAOING TEST- RIGHT
AVE SCIENCE TEST- RIGHT
AVE VOCAB TEST- RIGHT
AVE WRITING TEST- RIGHT
AVE EARNING/HR

value	SE	cV	OEFF	OEF T
0.6467	0.00658	0.01018	16035	12663
0.5488	0.00806	0.01469	2.2364	1.4955
0.1447	0.00482	0.03331	1.6736	1.2937
1.8478	0.00911	000493	0.9738	0.9868
2.9940	0.01213	0.00405	0.8040	0.8966
1.9470	0.00899	0.00462	1. 1425	1.0689
0.2275	0.01357	0.05963	2. 1831	1.4775
05158	0.00855	0.01658	2.5094	1.5841
0.5673	0.00787	0.01388	2. 1576	1.4689
0.6042	000850	0.01406	2.5582	1.5994
0.1166	0.00627	0.05376	1. 3630	1.8338
2.7032	0.02024	0.00749	2.4350	1.5605
2.7519	0.01046	0.00380	0.6396	0.7997
0.7225	0.01121	0.01552	4.8643	2. 2055
0.0053	0.00097	0.18116	1.6992	1.3036
0.5570	0.00778	0.01397	2.0771	1.4412
0.3988	0.00948	0.02379	3.4117	1.8471
O 3179	0.00774	0.02434	2.3788	1.5423
0.5491	0.00771	0.01403	2.0526	1.4327
0.7471	0.00673	0.00901	2.0151	1.4195
0. 1254	0.00694	0.05539	4.4613	2.1122
08750	0.00464	0.00530	09941	0.9971
0.8485	0.00468	0.00552	0.9301	0.9798
0.3713	0.00886	0.02387	2.9268	1.7108
0.1460	0.00514	0.03517	2.0010	1.4146
0. 1973	000896	0.04542	4.4197	2.1023
3.8477	0.03914	0.01017	2.8141	1.6775
3.8237	0.03929	0.01028	3. 1484	1.7744
10.0906	0.08970	0.00889	3.2187	1.7941
6.0061	0.04152	0.00691	23191	1.5228
9.4206	0.07646	0.00812	2.6009	1.6127
11.5050	0.09059	000787	3. 3436	1.8285
111637	0.09454	0.00847	3. 1834	1.7842
10.7147	0.07971	0.00744	2.5348	1.5921
2.4744	0.01581	0.00639	1.4733	1.2158

MEAN

0.02194	2.3766	1.5041
0.01028	23191	1.5228
0.03169	1.0304	0.3432

MEOIAN

STANDARO DEVIATION
STAT NO

MEAN

0.02909	28789	16455	
0.01547	2.5553	1	5985
0.04039	1.4592	04197	

SUmmary Table for SUBClass No. 16

PROP WORKEO LT 15 HRS./WK
PROP EARNEO LT \$ IOOO
PROP 'SUCCESS IN WORK VERY IMPOR
AVE ATT TO SELF
AVE ATT TO PLANNING
AVE IMPORTANCE OF PROX TO PARENT
AVE BOTH MATH NOT ATTEMPTEO
PROP MT 3 HRS ON HOMEWORK
PROP LT B AVERAGE
PROP MT 3. SO MIN WAGE
PROP FATHER NOT US NATIVE
AVE QUALITY OF INSTRUCTION
AVE SOMEONE PREVENTS SUCCESS'
PROP NEVER CUT CLASSES
PROP HARO OF HEARING
PROP W/ NO PLACE TO STUDY
PROP NOT PLANNING ON COLLEGE
PROP ABSENT MT 2 OAYS
PROP OIO NOT WORK LAST WK
PROP NOT LOOKING FOR WORK
PROP WHDSE MOM FINISHEO COLLEGE
PROP- GOOO LUCK NOT IMPORTANT
PROP FEEL PROUO
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANOICAP
PROP W/ VOCATIONAL PROGRAM
AVE BOTH REAOING TEST RIGHT
AVE BOTH VOCAB TEST- RIGHT
AVE BOTH MATH TEST- RIGHT
AVE CIVICS TEST-RIGHT
AVE REAOING TEST- RIGHT
AVE SCIENCE TEST- RIGHT
AVE VOCAB TEST- RIGHT
AVE WRITING TEST- RIGHT
AVE EARNING/HR

VALUE	SE	cV	OEFF	OEF T
0.6620	0.00950	0.01435	2. 1961	1.4819
0.5117	0.01072	0.02095	25415	15942
0. 1367	0.00560	0.04100	1.5088	1.2283
1.7896	0.01160	000648	11086	1.0529
3.0613	0.01497	0.00489	0.8486	0.9212
1.9708	0.01403	0.00712	1.8540	1.3616
0.3363	0.03854	0.11462	59514	2.4395
0.5154	0.01386	0.02689	4.2485	2.0612
0.5426	0.01063	0.01960	2.5121	1.5850
0.6573	0.01005	0.01529	2.4260	1.5576
0.2106	0.00983	0.04668	3.2885	1.8134
2.7177	0.02943	0.01085	3.3721	1.8363
2.8193	0.01469	0.00521	0.8610	0.9279
0.5956	0.01217	0.02043	3.3352	1.8263
0.0044	0.00098	0.22356	1.3211	1.1494
0.4916	0.01026	0.02087	2.3526	1.5336
0.2956	0.00988	0.03344	2.7450	1.6568
0.4143	0.01044	0.02521	2.4899	1.5779
0.5604	0.01068	0.01906	2.5553	1.5985
0.7502	0.00693	0.00924	1.3923	1. 1800
01802	0.01279	0.07096	75005	2.7387
0.8638	0.00680	0.00787	1.4074	1. 1863
0.8515	0.00674	0.00792	1.3661	11688
0.4340	0.01284	0.02959	3.7568	1.9382
0. 1417	0.00607	0.04283	17957	1.3400
0. 1545	0.00903	0.05846	3.5159	1.8751
3. 7353	0.05779	0.01547	3.6760	1.9173
4.0061	0.06574	0.01641	50392	2.2448
9.8065	0.13651	0.01392	4.2814	2.0691
58429	006345	0.01086	28693	1.6939
9.3267	0.11558	0.01239	3.4155	18481
11.2473	012489	0.01110	3.3898	18411
11.4850	- 15322	0.01334	4.5162	2. 1251
10.5919	013053	0.01432	34787	1.865 1
2.7142	0.02400	0.00884	1.8433	1.3577

NANE = WEST
STATISTIC

NAME = GENERAi
STAT NO
STATISTIC
value
SE

PROP	WORKED LT 15 HRS./WK	0.6462	000553
PROP	EARNED LT \$1000	0.5484	0.00632
PROP	'SUCCESS IN WORK VERY IMPOR	0. 1517	0.00363
AVE A	att to Self	1.8384	c. 00720
AVE A	ATt TO PLANNING	2.9008	0.00929
AVE I	IMPORTANCE OF PROX TO PARENT	1.9512	0.00715
AVE 8	BOTH MATH NOT ATTEMPTED	0.2934	0.01639
PROP	MT 3 HRS ON HOMEWORK	0.4334	0.00654
PROP	LT 8 average	0.6336	0.00628
PROP	MT 3.50 MIN WAGE	0.6076	0.00610
PROP	father not us native	0.1577	$\bigcirc 00486$
AVE Q	QUALITY OF INSTRUCTION	2.5843	0.01282
AVE	'SOMEDNE PREVENTS SUCCESS'	2.6916	0.00793
PROP	NEVER CUT CLASSES	0.6576	0.00698
PROP	HarD Of hearing	0.0044	0.00064
PROP	W/ No Place to study	0.5576	0.00557
PROP	NOT PLANNING ON COLLEGE	0.4774	0.00697
PROP	ABSENT MT 2 Days	0.3862	0.00560
PROP	DID NOT WORK LaSt wk	0.5745	0.00574
PROP	NOT LOOKING FOR WORK	0.7439	0.00507
PROP	WHOSE MOM FINISHED COLLEGE	0. 1129	0.00461
PROP-	- GOOD LUCK NOT IMPORTANT	0.8379	0.00419
PROP	FEEL PROUD	0.8295	0.00404
PROP	EXPECT TO FINISH COLLEGE	0. 3003	0.00593
PROP	W/ HANDICAP	0. 1517	0.00414
PROP	W/ VOCATIONAL PROGRAM	0.0	0.0
AVE 8	BOTH REAOING TESt- RIGHT	3.4279	0.02417
Ave 8	BOTH VOCAB TEST- RIGHT	3.5149	0.02497
ave	BOTH MATH TEST- RIGHT	8.3911	0.05721
AVE C	CIVICS TEST-RIGHT	5.6263	0.02708
Ave R	READING TESt- RIGHt	8.5855	004784
AVE S	SCIENCE TEST- RIGHT	10.5992	005475
AVE V	VOCAB TEST- RIGHT	10.3371	0.06130
AVE W	WRITING TEST- RIGHT	9.8054	0.05820
AVE E	EARNING/HR	2.5770	0.01264 ,

CV	DEFF	DEFT
0.00855	1.7713	1. 3309
0.01152	2. 1476	14655
0.02394	1.4197	11915
0.00392	0.9183	0.9583
0.00320	0.7418	0.8613
0.00366	1. 1488	10718
0.05588	3. 1656	1.7792
0.01510	2.3453	1.5315
0.00992	2.2638	15046
0.01003	2.0665	14375
003082	2.4438	15633
0.00496	1.5317	12376
0.00295	0.5849	07648
0.01062	2.7653	1.6629
0. 14548	1.3896	11788
0.00999	1.6649	1.2903
0.01557	2.7386	16549
0.01451	1.7816	1.3348
0.00999	1.8030	1.3428
0.00681	1.7787	1.3337
0.04083	3.5116	1.8739
0.00500	1.1578	10760
0.00487	1.0748	1.0367
0.01975	2.2936	1.5145
0.02730	1.9421	1.3936
0.0	0.0	0.0
0.00705	1.8373	1. 3555
0.00710	2. 1500	14663
0.00636	2.2326	1.4942
0.00481	1.4818	1.2173
0.00557	1.7739	13319
0.00517	1.8971	1.3774
000593	2. 1699	1.4731
0.00594	2.0608	1.4355
000490	1.3413	11581
0.01612	1.8646	13441
000783	1.8202	1.3491
0.02562	0.6473	02443

MEAN

MEO I AN

Standaro deviation

[^8]| 0.01612 | 1.8646 | 1.3441 |
| :--- | :--- | :--- |
| 0.00783 | 1.8202 | 1.3491 |
| 0.02562 | 0.6473 | 02443 |

$23:$

NAME =ACADEMIC

STAT NO.	STATISTIC	value	SE	CV	OEFF	DEFT
1	PROP WORKEO LT 15 HRS./WK	0.7223	000573	0.00794	1.6036	1. 2663
2	PROP EARNEO LT \$1000	0.5923	000695	001173	1.9695	1. 4034
3	PROP 'SUCCESS IN WORK VERY IMPOR	0.0960	0 00345	0.03592	13832	1. 1761
4	AVE ATT TO SELF	1.7731	0 co830	0.00468	1.1626	1.0782
5	ave att to planning	3. 1554	000943	0.00299	0.7193	08481
6	AVE IMPORTANCE OF PROX TO PARENT	1. 9554	000892	0.00456	1.5098	1. 2288
7	AVE BOTH MATH NOT ATTEMPTEO	0.2291	0.01320	0.05760	2.5430	1. 5947
8	PROP MT 3 HRS ON HOMEWORK	0.6927	000708	0.01022	2.3186	1. 5227
9	PROP LT B AVERAGE	0.3388	0.00814	0.02404	2.9525	1.7183
10	PROP MI 3.50 MIN WAGE	0.6076	0.00658	001084	1.7907	13382
11	PROP FATHER NOT US NATIVE	0.1489	0.00563	0.03780	2.5227	1.5883
12	AVE QUALITY OF INSTRUCTICN	2.9342	0.01654	0.00564	2.5602	1.6000
13	AVE 'SOMEONE PREVENTS SUCCESS'	2.9057	0.00946	0.00326	0.7212	0.8492
14	PROP NEVER CUT CLASSES	0.7788	0.00691	0.00887	2.5574	1. 5992
15	PROP HARO OF HEARING	0.0026	000058	0.22873	1. 1656	12106
16	PROP W/ NO PLACE TO STIDY	0.4578	0.00717	0.01567	2.0917	14463
17	PROP NOT PLANWING ON :OLLEGE	0.1268	000477	O 03755	2:1969	1.4822
18	PRROP ABSENT MT 2 DAYS	0.2536	0.00562	0.02215	1. 6621	1.2892
19	PROP DIO NOT WORK LAST WK	0.5964	0.00745	0.01250	2.2901	1.5133
20	PROP NOT LOOKING FOR WORK	0.7930	0.00482	0.00608	1. 3832	11761
21	PROP WHOSE MOM FINI SHEO COLLEGE	0.2298	000813	0.03537	41582	20392
22	PROP- GOOO LUCK NOT IMPORTANT	0.9111	000406	000446	11860	10891
23	PROP FEEL PROUD	0.8984	0.00360	0.00400	0.9183	0.9583
24	PROP EXPECT TO FINISH COLLEGE	0.6936	0.00685	0.00987	2.1328	1.4604
25	PROP W/ HANOICAP	0.1163	0.00435	003738	19877	1.4099
26	PROP W/ VOCATIONAL PROGRAM	0.0	0.0	0.0	00	0.0
27	AVE BOTH REAOING TEST- RIGHT	45439	0.03365	000741	2.2202	14900
28	AVE BOTH VOCAB TEST- RIGHT	4.6669	0.03764	000807	3.0277	1.7400
29	AVE BOTH MATH TEST- RIGHT	11.6386	0.07151	0.00614	23000	15166
30	AVE CIVICS TEST-RIGHT	6.6658	0.03396	0.00509	1.6039	1. 2664
31	AVE REAOING TEST- RIGHT	10.9340	0.06823	0.00624	2.1395	1.4627
32	AVE SCIENCE TEST-RIGHT	12.5135	006941	0.00555	2. 1250	14577
33	AVE VOCAB TEST- RIGHT	13.0992	0.08332		2.6001	16125
34	AVE WRITING TEST- RIGHT	12.1602	0.06481	060533	18481	13594
35	AVE EARNING/HR	2.5022	0.01598	0.00639	15326	12380
ME AN				002049	19760	13832
MEOIAN				000800	2.0397	1.4281
STANDAR	RO DEVIATION		-	003922	07047	0.2542

NOTE SUMMARY STATISTICS ABOVE EXCLUOE ZERO VALUES

NAME =VOCATIONAL

STAT NO.	STATISTIC	value	SE	cV	DEFF	DEF T
1	PROP WORKED LT 15 HRS./WK	0.6421	0.00786	0.01223	1.5885	1. 2604
2	PROP EARNED LT \$1000	0.5140	0.00868	001688	1,8063	1.3440
3	PROP 'SUCCESS IN WORK VERY IMPOR	0.1432	0.00562	0.03926	1.6341	1.2783
4	AVE ATT TO SELF	1.7771	001105	000622	0.9149	09565
5	AVE ATT TO PLANNING	23170	0.01500	0.00533	0.7757	0.8808
6	AVE IMPORTANCE DF PROX TO PARENT	19860	0.01139	0.00574	1.0713	1.0351
7	AVE BOTH MATH NOT ATTEMPTED	0.3428	0.01937	0.05652	1.7909	13383
8	PROP MT 3 HRS ON HOMEWORK	0.4014	000859	0.02141	1.8517	t. 3608
9	PROP LT 8 AVERAGE	0.6780°	0.00702	0.01035	1.3387	1. 1570
10	PROP MT 3.50 MIN WAGE	06251	000862	0.01379	1.8666	13663
11	PROP FATHER NOT US NATIVE	0.2063	O. 00747	0.03621	2.1073	1.4517
12	AVE QUALITY OF INSTRUCTION	26198	0.01643	0.00627	0.9727	0.9863
13	AVE 'SOMEDNE PREVENTS SUCCESS'	2.6202	0.01362	0.00520	0.7124	0.8441
14	PROP NEVER CUT CLASSES	06630	0.00998	0.01505	2.4911	1.5783
15	PROP HARD OF HEARING	0.0075	0.00134	0.17795	1.6132	1.2701
16	PROP W/ NO PLACE TO STUDY	0.5557	0.00807	0.01452	1.5737	1.2545
17	PROP NOT PLANNING ON COLLEGE	0.5366	0.01021	0.01903	2.5405	1.5939
18	PROP ABSENT MT 2 DAYS	0.4061	0.00841	0.02075	1.7605	1.3268
19	PROP DID NOT WORK LAST WK	0.5573	000817	0.01486	1.6174	1.2718
20	PROP NOT LOOKING FOR WORK	0.7016	0.00800	0.01741	1.8056	1.3437
21	PROP WHOSE MOM FINISHED COLLEGE	00640	0.00450	0.07025	2.6770	16362
22	PROP- GOOD LUCK NOT IMPORTANT	0.7651	0.00787	0.05029	1.6010	1. 2653
23	PROP FEEL PROUD	0.7950	000701	0.00882	1.3151	11468
24	PROP EXPECT TO FINISH COLLEGE	01853	0.00749	0.04039	2.3427	1.5306
25	PROP W/ HANDICAP	0.2056	0.00743	003615	2.2101	1.4866
26	PROP W/ VOCATIONAL PROGRAM	1.0000	0.0	0.0	0.0	00
27	AVE BOTH READING TEST- RIGHT	2.8677	0.03474	0.01212	2.0205	1.4215
28	AVE BOTH VOCAB TEST-RIGHT	2.9928	0.03454	0.01154	2.1278	1.4587
29	AVE BOTH MATH TEST- RIGHT	7.6284	0.07632	0.01000	2.0295	1.4246
30	AVE CIVICS TEST-RIGHT	5.0222	0.03976	0.00792	1.4580	1.2075
31	AVE READING TEST- RIGHT	7.3156	0.06786	0.00928	1.8507	1.3604
32	AVE SCIENCE TEST- RIGHT	9.2943	0.08474	0.00912	2.0258	1.4233
33	AVE VDCAB TEST- RIGHT	8.7795	0.08702	0.00991	2.1525	1.4671
34	AVE WRITING TEST- RIGHT	8.4361	0.08468	0.01004	2.0521	1.4325
35	AVE EARNING/HR	2.6018	0.01747	0.00672	1.1031	1.0503
	-					
MEAN		,		0. 02239	1.7294	1.3003
MEDI AN				0.01183	17983	13410
STANDAR	D DEVIATION			003139	0.4971	01995

NOTE: SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

SENIOR ESTIMATES

NAME =MALES
STAT NO
STATISTIC

PROP WORKED LT 15 HRS./WK
PROP EARNED LT $\$ 1000$
PROP W/ LT \$1000 EXPENSES
PROP ACCEPTED IN ARMED FORCES
PROP 'SUCCESS IN V InK VERY IMPDR
AVE ATT TO SELT
AVE ATT TD PLANNIMC
AVE IIMPORTANCE OF PROX TO PARENT
AVE SEN VDCAB NOT ATTEMPTED
AVE BOTH MATH NOT ATTEMPTED
DRDP MT 3 HRS ON HOMEWORK
PROP LT B GVERAGE
PROP MT 350 MIN WAGE
AVE ATT TO SCHOOL COUNSELING
PROP FATHER NOT US NATIVE
AVE QUALITY OF INSTRUCTIUN
AVE 'SDMEDNE PREVENTS SUCCESS'
PRDP NEVER CUT CLASSES.
PROP HARD GF HEARING
PROP W/ NO PLACE TO STUOY
PRDP NOT P PLANNING ON COLLEGE
PROP ABSENT MT 2 DAYS
PROP DIV NOT WORK LAST WK
PROR NOT LOOKING FDR WDRK
PROP WHOSE MOM.FINISHED COLLEGE
PROP- GOOD LUCK NOT IMPORTANT
PROP FEEL PROUD
PROP EXPECT TD FINISH COLLEGE
PROP W/ HANDICAP
PROP I/ VOCATIONAL PROGRAM
AVE BOTH READING TEST- RIGHT
AVE BOTH VOCAB TEST - RIGHT
AVE BOTH MATH TEST- RIGHT
AVE MOSAIC(I) TEST- RIGHT
AVE PICTURE TEST- RiGHT
AVE READING TEST- RIGHT
ALE VISUAL TEST- RIGHT
AVE EARNING/HR

VALUE SE

0.2786	0.00546
0.1377	0.00404
0.3996	0.00546
0.0647	0.00278
0.8907	0.00347
1.6593	0.00702
3.0104	0.00879
1.7923	0.00699
0.7938	0.02588
0.2333	0.01170
0.3905	0.00705
0.5367	0.00634
0.7148	0.00585
2.5729	0.01488
0.1241	0.00432
2.7477	0.01382
2.8133	0.00890
0.5079	0.00713
0.0051	0.00069
0.4775	0.00617
0.3347	0.00706
0.4281	0.00625
0.3448	0.00606
0.7711	0.00466
0.1623	0.00611
0.8562	0.00403
0.8787	0.00358
0.4724	0.00781
0.1424	000331
0.2298	0.00668
$A .5914$	0.03004
4.6783	0.03230
11.4057	0.06669
26.5981	0.18813
11.0467	0.05156
11.0237	0.67501
8.1162	0.04727
3.3446	0.00911

CV DEFF DEFT

0.01961	1.9255	1.3876
0.02936	1.8365	1.3552
0.01368	1.6303	1.2768
0.04288	1.6807	1.2964
0.00389	1.4786	1.2160
0.00423	12608	1.1228
0.00252	0.7809	0.8827
0.00390	1.3228	1.1501
0.03261	3.2777	1.8104
0.05015	2.1455	1.4648
0.01804	26972	1.6423
0.01182	2.0856	1.4442
0.00818	2.1291	1.4591
0.00578	1.6045	1.2667
0.03481	2.2594	1.5031
0.00503	2.4192	15554
0.00316	0.8509	0.9224
0.01405	2.6280	1.6211
0.13502	1.3073	1.1434
0.01293	1.9856	1.4091
0.02110	3.0045	1.7333
0.01461	2.0650	1.4370
0.01758	2.1017	1.4497
0.00604	1.5691	1.2526
0.03763	4.0283	2.0071
0.00471	1.2522	1.1190
0.00407	1.1124	1.0547
0.01653	31680	1.7799
0.02950	15143	1.2306
0.02908	3.2882	1.8134
0.00654	1.8432	1.3577
0.00696	2.3020	1.5172
0.00585	1.8651	1.3657
0.00707	2.6819	1.6376
0.00467	1.2468	1.1166
0.00590	1.8204	1.3492
0.00582	1.6139	1.2704
0.00272	1.1700	10817
0		

MEAN

0.01785	1.9725	1.3817
0.01000	1.8542	1.3617
0.02321	0.7302	02551

NOIE SUMMARY STATISTICS ABOVE EXCLUDE $2 E R D ~ V A L U E S ~$

SUMMARY TABLE FOR SUBCLASS NO. 3

NAME =FEMALES

STAT NO	STATISTIC	value	SE	CV	OEFF	OEFT
C ${ }^{\text {PR }}$						
1	PROP WORKEO LT 15 HRS./WK	0.3867	0.00598	001546	21295	1.4593
2	PROP EARNEO LT \$1000	02654	000537	0.02023	21461	1.4650
3	PROP W/ LT \$1000 EXPENSES	0.4346	0.00560	0.01288	1.8169	1.3479
4	PROP ACCYPTEO IN ARMEO FORCES	0.0274	0.00165	006028	1.4608	1. 2086
5	PROP 'SUCCESS IN WORK VERY IMPOR	0.8786	0.00329	0.00375	1.3732	1. 1719
6	AVE ATT TO SELF	1.8444	0.00740	0.00401	1. 2903	1. 1359
7	AVE ATT TO PLANNING	3.1120	0.00881	0.00283	1.0101	1. 0051
8	AVE IMPORTANCE OF PROX TO PARENT	1.8373	000731	0.00398	16172	1.2717
5	AVE SEN VOCAB 'NOT ATTEMPTED	0.7454	0.02764	0.03708	4.4419	2. 1076
10	AVE BOTH MATH NOT ATTEMPTED	0.3256	0.01309	0.04020	2.2489	1. 4996
11	PRROP MT 3 HRS ON HOMEWORK	0.5252	0.00684	0.01302	2.6417	1.6253
12	PROP LT B AVERAGE	0.3833	0.00634	0.01654	2.4000	1.5492
13	PROP MT 350 MIN WAGE	0.5191	000674	0.01298	2.5602	16001
14	AVE ATT TO SCHOOL COUNSELING	2.5957	0.01442	0.00555	1.7523	1.3237
15	PROP FATHER NOT US NATIVE	0.1303	0.00420	0.03226	22393	1.4964
16	AVE QUALITY OF INSTRUCTION	2.7075	0.01248	0.00461	2.0755	14406
17	aVE 'SOMEONE PREVENTS SUCCESS'	2.9050	000849	000292	09495	0.9744
18	PROP NEVER CUT CLASSES	0.5922	0.00756	001276	33157	1.8209
19	PROP HARO OF HEARING	0.0021	0.00045	0.21397	1.4420	1.2008
20	PROP W/ NO PLACE TO STUOY	0.5426	0.00568	0.01047	1.8232	1. 3503
21	PROP NOT PLANNING ON COLLEGE	0.2698	0.00586	0.02170	2.5541	1. 5982
22	PROP ABSENT MT 2 DAYS	0.4138	0.00551	0.01332	17660	1.3289
23	PROP OIO NOT WORK LAST WK	0.3892	0.00619	0.01592	2.2747	1.5082
24	PROP NOT LOOKING FOR WORK	0.7877	0.00438	0.00555	1.5989	12645
25	PROP WHOSE MOM FINISHEO COLLEGE	0.1258	0.00514	0.03783	35064	1.8725
26	PROP- GOOO LUCK NOT IMPORTANT	0.9011	0.00327	0.00363	1.1787	1.0857
27	PROP FEEL PROUO	0.8890	0.00318	0.00358	1.0695	1.0342
28	PROP EXPECT TO FINISH COLLEGE	0.4487	0.00709	0.01579	2.8670	1.6932
29	PROP W/ HANDICAP	0.0958	000305	0.03184	1.6095	1. 2687
30	PROP W/ VOCATIONAL PROGRAM	0.2567	0.00621	0.02419	2.8751	16956
31	AVE BOTH REAOING TEST- RIGHT	4.5757	002915	0.00637	20697	14386
32	AVE BOTH VOCAB TEST- RIGHT	4.6128	0.03129	0.00678	25722	1.6038
33	AVE BOTH MATH TEST- RIGHT	10.4394	0.06428	0.00616	2.2588	1.5029
34	AVE MOSAIC(1) TEST-RIGHT	27.7085	019205	0.00693	3. $\$ 235$	17673
35	AVE PICTURE TEST- RIGHT	11.6947	005131	0.00439	1.4145	1. 1893
36	AVE REAOING TEST- RIGHT	11.0121	0.06127	000556	19984	14136
37	AVE VISUAL TEST- RIGHT	7.3419	0.04118	0.00561	1.7122	1.3085
38	AVE EARNING/HR	29455	0.01101	0.00374	1.5389	1.2405
MEAN				001960	20716	14176
MEOIAN				001162	2.0340	14261
StANDAR	RO DEVIATION			0.03494	07494	0.2525

NOTE: SUMMARY STATISTICS ABOVE EXCLUOE ZERO VALUES

		SUMMARY TABLE FOR	SLJCLASS NO	NAME = WHITE			OEF T
STAT NO		Statistic	VALUE	SE	CV	OEFF	
				-			
1	PROP	WORKEO LT 15 HRS./WK	0.3226	0.00491	0:01521	19053	1.3803
2	PROP	EARNEO LT \$1000	0.2022	0.00444	0.02194	2. 1827	1.4774
3	PROP	W/ LT \$1000 EXPENSES	0.4089	0.00509	0.01246	18784	1.3706
4	PROP	ACCEPTEO IN ARMEO FORCES	0.0342	000172	0.05027	1.5634	1.2503
5	PROP	'SUCCESS IN WORK VERY IMPOR	0.8844	0.00271	0.00307	11538	1.0742
6	AVE A	ATT TO SELF	1.7942	000604	- 0033,7	11201	1.0584
7	AVE	ATT TO PLANNING	3.1193	0.00742	0.00238	08525	0.9233
8	AVE I	IMPORTANCE DF PROX TO PARENT	1.8004	0.00625	0.00347	1.4564	12068
9	AVE S	SEN VOCAB NOT ATTEMPTEO	0.7742	002448	0.03161	4.2067	20510
10	AVE B	BOTH MATH NOT ATTEMPTEO	0.2387	000963	0.04035	20293	1.4245
11	PROP	MT 3 HRS ON HOMEWORK	- 4702	000673	001432	3.1319	1. 7697
12	PROP	LT B AVERAGE	0.6087	0.00559	$0.0: 368$	22303	1. 4934
13	PROP	MT 3.50 MIN WAGE	0.5960	0.00601	0.01009	2.5712	1. 6035
14	AVE A	ATT TO SCHOOL COUNSELING	2.6511	001351	0.00510	1.7645	1. 3283
15	PROP	FATHER NOT US NATIVE	0.0816	000286	0.03504	1.9118	1.3827
16	AVE O	OUALITY OF INSTRUCTION	2.7583	0.01226	000445	2.6652	1.6325
17	AVE '	'SOMEONE PREVENTS SUCCESS'	2.9065	0.00710	0.00244	07956	0.8920
18	PROP	NEVER CUT CLASSES	0.5558	0.00711	001279	3.5073	1.8728
19	PROP	HARO OF HEARING	0.0029	0.00045	O. 15619	1.2748	1. 1291
20	PROP	W/ NO PLACE TO STUOY	0.5203	000518	0.00996	18504 -	1. 3603
21	PROP	NOT PLANNING ON COLLEGE	0.2937	0.00597	0.02033	30942	1.7590
22	PROP	AESENT MT 2 OAYS	04055	000533	0.01313	2.0270	1. 4237
23	PROP	OIO NOT WORK LAST WK	0.3424	000552	0.01612	2.3317	1. 5270
2.4	PROP	NOT LOOKING FOR WORK	$\bigcirc 7949$	0.00369	0.00464	1.4153	1. 1897
25	PROP	WHOSE MOM FINISHED COLLEGE	- 1568	000543	003461	4 '1845	2.0456
26	PROP-	- GOOD LUCK NOT IMPORTANT	0.9092	000261	0.00287	0.9291	09639
27	PROP	FEEL PROUO	0.8994	000277	000308	10287	10143
28	PROP	EXPECT TO FINISH COLLEGE	0.4702	0.00703	001496	3.4239	1.8504
29	PROP	W/ HANOICAP	0.0908	0.00265	0.02917	1.5419	1.2418
30	PROP	W/ VOCATIONAL PROGRAM	0.2238	000555	0.02480	3.0734	17531
31	AVE	BOTH READING TEST- RIGHT	49366	002356	0.00477	16296	1.2765
32	AVE B	BOTH VOCAB TEST-RIGHT	49436	002646	0.00535	22271	14924
33	AVE 8	BOTH MATH TEST - RIGHT	11.6225	0.05462	0.00470	1.8823	1.3720
34	AVE M	MOSAIC(1) TEST - RIGHT	27.9890	0.18590	000564	3.8265	19561
35	AVE P	PICTURE TEST- RIGHT	11.6273	004372	000376	1.3026	11413
36	AVE R	REAOING TEST- RIGHT	11.7891	0.05028	0.00426	1.5887	12604
37	AVE	VISUAL TEST- RIGHT	8.0740	0.03699	000458	1.4934	12220
38	AVE E	EARNING/HR	31378	000975	0.00311	16165	12714
MEAN					001708	2.0702	14064
MEDIAN					001003	1.8804	13713
StANOAR	0 OEV	VIATION			002618	09149	03080

NOTE SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

SUmmary table for Subclass no
5

PROP	WORKEO LT 15 HRS./WK
PROP	EARNED LT \$1000
PROP	W/ LT \$1000 EXPENSES
PROP	ACCEPTED IN ARMED FORCES
PROP	'SUCCESS IN WORK VERY IMPOR
AVE	ATt TO SELF
AVE	ATT TO PLANNING
AVE I	IMPORTANCE OF PROX TO PARENT
AVE S	SEN VOCAB int attempteo
AVE 8	BOTH MATH NOT ATTEMPTED
PROP	MT 3 HRS ON HOMEWORK
PROP	LT B AVERAGE
PROP	MT 3.50 MIN WAGE
AVE A	ATT TO SCHOOL COUNSELING
PROP	FATHER NOT US NATIVE
AVE	QUALITY OF INSTRUCTION
AVE	'SOMEONE PREVENTS SUCCESS'
PROP	NEVER CUT CLASSES
PROP	HARO OF HEARING
PROP	W/ NO PLACE TO STUOY
PROP	NOT PLANNING ON COLLEGE
PROP	ABSENT MT 2 OAYS
PROP	OIO NOT WORK LAST WK
PROP	NOT LUOKING FOR WORK
PROP	WHOSE MOM FINISHEO COLLEGE
PROP -	- GOOO LUCK NOT IMPORTANT
PROP	FEEL PROUD
PROP	EXPECT TO FINISH COLLEGE
PROP	W/ HANOICAP
PROP	W/ VOCATIONAL PROGRAM
AVE 8	BOTH READING TEST- RIGHT
AVE 8	BOTH VOCAB TEST- RIGHT
AVE 8	BOTH MATH TEST- RIGHT
AVE M	MOSAIC(1) TEST- RIGHT
AVE P	PICTURE TEST- RIGHT
AVE R	REAOING TEST- RIGHT
AVE V	VISUAL TEST - RIGHT
	EARNING/HR

VALUE	SE
0.3997	0.01114
0.2385	000892
0.3952	0.01021
0.0795	0.00567
0.9147	0.00600
15400	0.01435
2.9582	0.01981
1.8129	0.01453
0.9215	0.06174
05159	0.03497
0.4986	0.01205
0.5642	0.01174
0.6750	0.01013
2.3825	0.02605
0.2634	0.01064
2.6719	0.02287
2.7416	0.01877
0.5972	0.01421
0.0032	0.00117
0.4706	0.01090
0.2481	0.01114
0.4235	001061
0.5020	0.01051
0.7176	000907
0.1363	0.00835
0.7952	000943
0.8542	0.00737
0.5263	0.01168
0.1203	000663
0.2859	001147
3.5616	005406
3.5121	005095
8.6794	0.12700
23.3797	0.34276
10.5536	0.11768
8.7659	0.10739
6.4664	0.09476
3.0836	0.01754

MEAN

0.03366	1.9985	1.3946
0.01799	1.8465.	13589
0.05945	0.6846	02347

NOTE SUMMARY STATISTICS abOVE EXClUDE ZERO VALUES
24

NAME =HI SPANIC

Stat No.	Statistic	value	SE	CV	DEFF	DEFT
1	PROP WORKED LT 15 HRS./WK	O 3302	0.00464	001405	2.4181	15550
2	PROP EARNED LT \$1000	0.1982	000364	001834	2.1788	14761
3	PROP W/ LT \$1000 EXPENSES	04186	0.00421	0.01006	18460	13587
4	PROP ACCEPTED IN ARMEO FORCES	0.0495	0.00179	0.03622	1.7238	1.3129
5	PROP 'SUCCESS IN WORK VERY IMPOR	0.8840	0.00239	0.00270	1.1816	1.0870
6	ave att to Self	1.7526	000568	0.00324	1.3235	1.1504
7	AVE ATT TO PLANNING	3.0477	0.00710	0.00233	09410	0.9700
8	AVE IMPORTANCE OF PROX TO PARENT	1.8126	000532	000294	13479	1.1610
9	AVE SEN VOCAB NOT ATtEMPTED	0.7829	0.02495	0.03186	57154	23907
10	AVE BOTH MATH NOT ATTEMPTED	0.3032	0.01069	0.03525	26610	1.6313
11	PROP MT 3 HRS ON HOMEWORK	04350	000548	0.01260	30237	17389
12	PROP LT 8 AVERAGE	0.4776	0.00524	0.01097	2.7150	1.6477
13	PROP MT 350 MIN WAGE	0.6131	0.00518	0.00845	2.7689	16640
14	AVE ATT TO SCHOOL COUNSELING	2.5500	0.01191	0.00467	2.0370	14272
15	PROP FATHER NOT US NATIVE	U. 1283	0.00363	0.02832	29925	1.7299
16	AVE QUALITY OF INSTRUCTION	2.6864	001061	000395	2.4772	15739
17	AVE 'SOMEONE PREVENTS SUCCESS'	28455	000666	0.00234	0.8772	0.9366
18	PROP NEVER CUT CLASSES	05356	0.00643	0.01201	4.0908	2.0226
19	PROP HARD OF HEARING	0.0039	000047	0.11922	14857	12189
20	PROP W/ NO PLACE TO Study	0.5204	0.00448	0.00860	1.9815	14077
21	PROP NOT PLANHING ON COLLEGE	O 3161	0.00556	001758	3.7518	19310
22	PROP ABSENT MT 2 DAYS	0.4382	0.00466	0.01065	2.1854	1.4783
23	PROP DIO NOT WORK LAST WK	03619	000456	0.01259	2.2243	1.4914
24	PROP NOT LOOKING FOR WORK	0.7794	000325	0.00417	1.4859	1.2190
25	PROP WHOSE MOM FINISHED COLLEGE	0.1352	0.00414	003063	4. 1080	2.0268
26	PROP- GOOD LUCK NOT IMPORTANT	0.8741	000299	0.00342	13699	11704
27	PROP FEEL PROUD	0.8795	000255	0.00290	1.0406	10201
28	PROP EXPECT TO FINISH COLLEGE	0.4320	000601	001391	36576	1.9125
29	PROP W/ HANDICAP	0.1072	000250	0.02334	1.7157	13098
30	PROP W/ VOCATIONAL PROGRAM	0.2654	0.00555	0.02091	3.9419	1.9854
31	AVE BOTH READING TEST- RIGHT	4.4758	002544	0.00568	2.6392	16246
32	AVE BOTH VOCAB TEST- RIGHT	4.4826	0.02716	000606	3,2670	18075
33	AVE BOTH MATH TEST- RIGHT	106337	0.05880	000553	30072	1.7341
34	AVE MOSAIC(1) TEST- RIGHT	268458	0.17712	0.00660	4.4768	21158
35	AVE PICTURE TEST- RIGHT	11.2614	004479	0.00398	1.7820	1.3349
36	AVE READING TEST- RIGHT	10.7543	005534	0.00515	2.6730	1.6349
37	AVE VISUAL TEST- RIGHT	76567	0.03771	000493	21745	
38	AVE EARNING/HR	3.1381	000855	000272	16471	12834
MEAN				001444	24456	15269
MEDIAN				000853	2.2048	1.4849
Standard	O OEVIATION		-	002006	10971	03426

note Summary statistics above excluoe zero values

NAME =CATHOL IC

Stat no.	statistic
1	PROP WORKEO LT 15 HRS./WK
2	PROP EARNED LT \$1000
3	PROP W/ LT \$1000 EXPENSES
4	PROP ACCEPTEO IN ARMEO FORCES
5	PROP 'SUCCESS IN WORK VERY IMPDR
6	ave att to self
7	AVE ATT TO PLANNING
8	aVe importance of prox to parent
9	AVE SEN VOCAB NOT ATtempteo
10	AVE 8OTH MATH NOT ATtEMPTEO
11	PROP MT 3 HRS ON HOME WORK
12	PROP LT B AVERAGE
13	PROP MT 350 MIN WAGE
14	AVE ATT TO SCHOOL COUNSELING
15	PROP FATHER NOT US NATIVE
16	AVE QUALITY OF INSTRUCTION
17	ave 'Someone prevents Success.
18	PROP NEVER CUT CLASSES
19	PROP HARO OF HEARING
20	PROP W/ NO PLACE TO Stuoy
21	PROP MOT PL 'NNING ON COLLEGE.
22	PROP A8SENT MT 2 OAYS
23	PROP OIO NOT WORK LAST WK
24	PROP NOT LOOKING FOR WORK
25	PROP WHOSE MOM FINISHEO COLLEGE
26	PROP- GOOO LUCK NOT IMPORTANT
27	PROP FEEL PROUO
28	PROP EXPECT TO FINISH COLLEGE
29	PROP W/ HANOICAP
30	PROP W/ VOCATIONAL PROGRAM
31	AVE BOTH REAOING TEST- RIGHt
32	AVE 8OTH VOCAB TEST- RIGHT
33	AVE BOTH MATH TEST- RIGHT
34	AVE MOSAIC(1) TEST- RIGHT
35	AVE PICTURE TEST- RIGHT
36	AVE READING TEST- RIGHT
37	AVE VISUAL TEST- RIGHt
38	AVE EARNING/HR

Value	SE	CV	DEFF	DEFT
0.3373	001669	0.04947	33654	1.8345
0.2220	001609	0.07248	41583	20392
0.4236	0.01877	0.04430	3.9329	1.9831
0.0168	000308	0.18324	1.5599	12489
0.8886	0.00911	0.01025	2.0153	1.4196
1.7849	0.02229	0.01249	2.3452	1.5314
31264	0.02292	0.00733	12105	1. 1002
18847	0.01915	0.01016	21007	1.4494
06902	0.06002	0.08696	5.3753	23185
0.2351	0.02203	0.09369	1.9367	1.3917
06234	0.02683	0.04304	8.2136	28659
0.3784	0.02205	005828	55675	2. 3596
0.6598	001999	0.03029	47080	2. 1698
27981	0.05442	0.01945	4.2677	2.0658
O 1347	001275	009460	3.7833	19451
2.9928	0.04903	0.01638	68889	2.6247
2.9469	002002	000679	0.9811	0.9905
0.7462	002555	0.03425	88816	29802
0.0046	0.00174	0.38150	20534	14330
0.4635	0.01693	0.03652	3. 1237	1.7674
0.1616	0.01629	0 10080	5.6645	23800
0.2450	0.01284	0.05241	2.4038	15504
0.3610	0.01927	0.05337	43310	20811
0.7746	001333	0.01720	2.6842	1.6383
0.1800	0.01530	0.08504	46205	2. 1495
09027	0.00861	000954	1.5169	1.2316
09072	000780	0.00860	1.3255	1.1513
06441	0.02582	004008	7.7029	2.7754
0.0786	0.00707	008991	21019	14498
0.0952	0.01364	0.14321	5.8450	24176
49957	0.07209	0.01443	2.5379	15931
53542	0.07738	001445	31804	17834
12.1008	0.14924	001233	2.3886	15455
27.7544	0.52850	0.01904	57268	23931
120788	0. 11046	000914	1.4919	12214
11.9522	O 13487	0.01128	19658	14021
7.5327	0.09040	001200	16852	12982
3.2045	0.03073	000959	2.4318	1.5594

MEAN

| 005247 | 35809 | 18195 |
| :--- | :--- | :--- | :--- |
| 003227 | 29040 | 17029 |
| 006863 | 20718 | 05270 |

[^9]2.5
PROP WORKEO LT 15 HRS /WK
PROP EARNEO LT \$1000
PROP W/ Lt S1000 EXPENSES
PROP ACCEPTEO IN ARMED FORCES
PROP 'SUCCESS IN WORK VERY IMPOR
AVE ATT TO SELF
AVE ATT TO PLANNING
AVE IMPORTANCE OF PROX TO PARENT
AVE SEN VOCAB NOT ATTEMPTED
AVE BOTH MATH NOT ATTEMPTEO
PROP MT 3 HRS ON. HOMEWORK
PROP LT B AVERAGE
PROP MT 3.50 MIN WAGE
AVE ATT TO SCHOOL COUNSELING
PROP FATHER NOT US NATIVE
AVE QUALITY OF INSTRUCTION
AVE 'SOMEONE PREVENTS SUCCESS'
PROP NEVER CUT CLASSES
PROP HARO OF HEARING
PROP W/ NO PLACE TO STUOY
PROP NOT PLANNING ON COLLEGE
PROP ABSENT MT 2 OAYS
PROP DIE NOT WORK LAST WK
PROP NOT LOOKING FOR WORK
PROP WHOSE MOM FINISHEO COLLEGE
PROP- GOOO LUCK NOT IMPORTANT
PROP FEEL PROUO
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANOICAP
PROP W/ VOCATIONAL PROGRAM
AVE BOTH REAOING TEST- RIGHT
AVE BOTH VOCAB TEST- RIGHT
AVE BOTH MATH TEST- RIGHT
AVE MOSAIC(1) TEST- RIGHT
AVE PICTURE TEST- RIGHT
AVE REAOING TEST- RIGHT
AVE VISUAL TEST- RIGHT
AVE EARNING/HR

VALUE
SE
CV
OEFF
OEFT

0.4368	003594	008227	46012	2. 1450
0.3058	004670	0.15270	9.3148	30520
0.3741	0.02974	0.07948	34155	18481
0.0271	001046	0.38617	3.7409	19341
0.8584	001955	0.02277	2.5866	16083
1.7431	0.05009	0.02874	3.8383	1.9592
3.2181	0.04742	0.01474	1.5534	1.2464
1.7928	004898	0.02732	4.1493	2.0370
1.0728	014867	0. 13858	7.7135	27773
0.2637	0.07830	029689	5.3827	23201
0.6958	0.05402	0.07763	*****	34469
0.3218	003354	0.10420	4.5391	21305
0.5936	0.03968	0.06685	5.6457	2.3761
2.8117	0.09718	0.03456	3.8709	19675
0.1502	002403	0.15997	4.0695	20173
3. 1251	0.10748	0.03439	******	3. 2752
3.0060	0.06372	002120	2.6666	1.6330
0.5936	0.03348	0.05639	4.0276	2.0069
0.0001	0.00005	0.66157	0.0333	0. 1824
O 3843	0.03498	0.09102	4.5929	21431
0.1867	0.04130	0.22116	*****	3.2578
O 3568	0.03257	0.09130	4.0518	2.0129
05417	0.05397	009963	******	3.2003
0.7715	0.02348	0.03043	2.6897	1.6400
0.3893	005961	0.15311	******	3.7218
0.9129	0.01147	0.01256	0.8760	0.9360
0.9044	001717	0.01898	19326	1.3902
0.6924	0.06591	009520	******	41439
0.0926	001166	0.12593	1.5017	1.2254
0.0785	0.04003	050993	*****	4.4182
5.3543	0.21802	0.04072	5.3183	23061
5.5737	O 28290	0.05076	8.8595	2.9765
12.7686	051959	0.04069	6.0343	24565
30.0006	150342	005011	8.6788	2.9460
11.9225	027925	002342	20924	14465
13.0217	0.46532	003573	46836	2. 1642
8.5966	029402	003420	3.6656	19146
3. 1427	007270	0.02313	3. 1410	1.7723

MEAN

0.11038	5.8757	22641
0.06162	43442	20838
0.13951	4.4107	08774

NOTE SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

NAME =LOW SES

STAT NO	STATISTIC	VALUE	SE	cV	DEFF	DEF T
1	PROP WORKED LT 15 HRS./WK	0.3570	0.00739	002070	2.0125	1.4186
2	PROP EARNED LT \$1000	0.1855	0.00590	0.03183	2.0713	1. 4392
3	PROP W/ LT \$1000 EXPENSES	0.4596	0.00705	0.01534	1.7117	13083
4	PROP ACCEPTED IN ARMED FORCES	0.0665	0.00348	0.05231	1.6770	1. 2950
5	PROP 'SUCCESS IN WORK VERY IMPOR	0.8617	0.00465	0.00539	1.3421	11585
6	AVE ATt TO SELF	1.7775	0.00972	0.00547	1. 1993	1.0951
7	AVE ATT TO PLANNING	2.8805	$0.01{ }^{165}$	0.00404	0.8233	0.9074
8	AVE IMPORTANCE OF PROX TO PARENT	1.8375	0.00895	0.00487	12465	11165
9	AVE SEN VOCAB NOT ATTEMPTED	0.7607	004113	0.05407	4.7266	21741
10	AVE BOTH MATH NOT ATTEMP,TED	03712	001910	0.05145	22773	15091
11	PROP MT 3 HRS ON HOMEWORK	0.3859	000793	0.02056	22376	1.4958
12	PROP LT B AVERAGE	0.5675	000837	0.01475	23915	15464
13	PROP MT 3.50 MIN WAGE	0.5959	0.00769	0.01290	2.0510	14321
14	AVE ATT TO SCHOOL COUNSELING	2.3597	0.01570	000665	13790	1. 1743
15	PROP FATHER NOT US NATIVE	0.1789	0.00648	0.03622	24838	1.5760
16	AVE QUALITY OF INSTRUCTION	2.5877	001479	0.00572	1.4021	1. 1841
17	AVE 'SOMEONE PREVENTS SUCLESS'	2.6873	0.01102	0.00410	0.7988	0.8938
18	PROP NEVER CUT CLASSES	05912	0.00829	0.01402	2.3520	1. 5336
19	PROP HARD OF HEARING	0.0052	0.00095	0.18175	1.5861	1. 2594
20	PROP W/ NO PLACE TO STUDY	06304	0.00683	001084	1.6001	1.2649
21	PROP NOT PLANNING ON COLLEGE	0.4681	0.00880	0.01880	2.6890	1.6398
22	PROP ABSENT MT 2 DAYS	0.4665	000678	001454	1.5563	1. 2475
23	PROP DID NOT WORK LAST WK	0.4086	000786	001923	21519	1.4669
24	PROP NOT LOOKING FOR WORK	0.7615	000590	0.00775	15870	1. 2597
25	PROP WHOSE MOM FINISHED COLLEGE	0.0033	000078	0.23632	1.8666	1. 3662
26	PROP - GOOD LUCK NOT IMPORTANT	08336	0.00552	0.00663	1.3574	1. 1651
27	.PROP FEEL PROUD	08364	0.00502	000600	1. 1446	1.0699
28	PROP EXPECT TO FINISH COLLE'GE	O 2612	000703	0.02691	2.1898	14798
29	PROP W/ HANDICAP	0. 1348	000507	0.03763	19846	1. 4088
30	PROP W/ VOCATIONAL PROGRAM	O 3547	0.00862	0.02430	27556	1. 6600
31	AVE BOTH READING TEST-RIGHT	3.7576	003466	0.00922	1.9851	14089
32	AVE BOTH VOCAB TEST- RIGHT	3.7201	. 003255	000875	1.9668	14024
33	AVE BOTH MATH TEST- RIGHT	8.8559	0.07034	0.00794	1.8366	1. 3552
34	AVE MOSAIC(1) TEST-RIGHT	24.8302	0.21947	0.00884	24334	1.5599
35	AVE PICTURE TEST- RIGHT	10.6588	006815	0.00639	14036	1. 1848
36	AVE REAOING TEST- RIGHT	91650	007112	000776	1.8506	13604
37	AVE VISUAL TEST- RIGHT	6.8234	005302	000777	1.7417	13197
38	AVE EARNING/HR	3.0308	001324	0.00437	1.3186	11483
MEAN				002664	1.8734	13496
MEDIAN				001187	18436	13578
STANDAR	D DEVIATION			004615	06772	02309

NOTE SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

StAT NO	STATISTIC	Value	SE	CV	DEFF	DEF T
1	PRROP WORKEO LT 15 HRS./WK	0.3082	0.00563	0.01828	1.9143	1.3836
2	PROP EARNEO LT \$1000	0. 1760	0.00430	0.02441	17091	1. 3073
3	PROP W/ LT \$1000 EXPENSES	0.4218	0.00566	0.01341	1.7114	1.3082
4	PROP ACCEPTEO IN ARMEO FORCES	0.0442	000210	0.04749	1.3577	1. 1652
5	PROP 'SUCCESS IN WORK VERY IMPOR	0.8902	0.00313	0.00352	11540	1.0742
6	AVE ATt TO SELF	1.7687	0.00747	0.00422	12544	11200
7	AVE ATT TO PLANNING	3.0753	0.00827	0.00269	07400	0.8602
8	AVE IMPORTANCE OF PROX TO PARENT	1.8318	0.00678	0.00370	1.2167	1. 1030
9	AVE SEN VOCAB NOT ATTEMPTED	07783	002703	0.03473	3.6140	1.9010
10	AVE BOTH MATH NOT ATIEMPTED	0.2794	0.01166	0.04174	1.8904	1.3749
11	PROP MT 3 HRS ON HOMEWORK	0.4358	000654	0.01502	2.2314	14938
12	PROP LT 8 AVERAGE	0.4629	0.00648	0.01400	21629	1.4701
13	PROT MT: 3.50 MIN WAGE	06195	000649	0.01047	2.2576	1.5058
14	AVE ATT TO SCHOOL COUNSELING	26079	001392	0.00534	1.4519	1. 2050
15	PROP FATHER NOT US NATIVE	0. 1064	0.00374	003517	19176	1.3848
16	AVE QUALITY OF INSTRUCTION	2.7222	0.01145	0.00421	1.6877	1.2991
17	AVE 'SOMEONE PREVENTS SUCCESS'	2.8595	0.00794	0.00278	0.7121	08439
18	PROP NEVER CUT CLASSES	0.5467	0.00739	0.01352	2.8096	1.6762
19	PRROP HARO OF HEARING	0.0040	0.00064	015915	1.3955	1.1813
20	PROP W/ NO PLACE TO STUOY	0.5251	0.00527	001004	1.4239	11933
21	PROP NOT PLANNING ON COLLEGE	0.3058	0.00563	0.01840	2.0050	1.4160
22	PROP ABSENT MT 2 DAYS	0.4156	0.00596	0.01433	1.8726	1.3684
23	PROP OID NOT WORK LAST WK	0.3393	0.00566	0.01669	18339	13542
24	PROP NOT LOOKING FOR WORK	0.7856	0.00424	0.00539	1.3444	1. 1595
25	PROP WHOSE MOM FINISHED COLLEGE	00586	0.00278	0.04741	19695	1.4034
26	PROP- GOOD LUCK NOT IMPORTANT	0.8861	0.00346	0.00390	1.0537	1.0265
27	PROP FEEL PROUO	0.8936	0.00323	0.00361	09843	0.9921
28	PROP EXPECT TO FINISH COLLEGE	0.4186	0.00592	0.01414	18523	1.3610
29	PROP W/ HANDICAP	0.1000	0.00311	0.03113	14626	1. 2094
30	PROP W/ VOCATIONAL PROGRAM	0.2527	0.00610	0.02416	25464	1.5957
31	AVE BOTH REAOING TEST- RIGHT	4.6303	0.02468	0.00533	13436	1. 1591
32	AVE BOTH VOCAB TEST-RIGHT	46263	002558	0.00553	1.6054	1. 2671
33	AVE BOTH MATH TEST- RIGHT	10.9628	0.05391	0.00492	1.4034	1. 1846
34	AVE MOSAIC(1) TEST- RIGHT	27.4246	0.18225	0.00665	2.5984	1.6120
35	AVE PICTURE TEST- RIGHT	114732	0.04780	0.00417	1.1181	10574
36	AVE READING TEST- RIGHT	11.1035	0.05108	0.00460	12525	1. 1192
37	AVE VISUAL TEST- RIGHT	7.7359	0.03950	000511	12986	1. 1396
38	AVE EARNING/HR	3.1550	000989	0.00313	1.2109	1. 1004
MEAN				0.01796	16678	12731
MEDIAN				001026	15340	1.2382
Standar	D DEVIATION			002682	05885	02199

[^10]PROP WORKEO LT 15 HRS./WK PROP EARNEO LT \$ 1000 PROP W/ LT \$1000 EXPENSES PROP ACCEPTEO IN ARMEO FORCES PRCP 'SUCCESS IN WORK VERY IMPOR aVE ATt TO SELF aVE ATt TO PLANNING aVE ImPORTANCE OF PROX TO PARENT AVE SEN VOCAB NOT ATTEMPTEO aVE BOTH MATH NOT ATTEMPTEO PROP MT 3 HRS ON HOMEWORK PROP LT B AVERAGE PROP MT 3.50 MIN WAGE AVE ATt TO SCHJOL COUNSELING PROP FATHER NOT US NATIVE AVE QUALITY OF INSTRUCTION aVE 'SOMEONE PREVENTS SUCCESS' PROP NEVER CUT CLASSES PROP HARO OF HEARING PROP W/ NO PLACE TO STUOY PROP NOT PLANNING ON COLLEGE
PROP ABSENT MT 2 OAYS
PROP OIO NOT WORK LAST WK
PROP NOT LOOKING FOR WORK
PROP WHOSE MOM FINISHEOCCOLLEGE
PROP- GODD LUCK NOT IMPORTANT
PROP FEEL PROUO
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANDICAP
-RC W/ VOCATIONAL PROGRAM
A.E BOTH REAOING TEST- RIGHT
AVE BOTH VOCAB TEST- RIGHT
aVE BOTH MATH TEST- RIGHT
AVE MOSAIC(1) TEST- RIGHT
AVE PICTURE TEST- RIGHT
AVE REAOING TEST- RIGHT
aVE VISUAL TEST- RIGHT
aVE EARNING/HR

CV
0.00844

0.3566	0.00844
0.2781	0.00859
0.3575	0.00847
00222	0.00220
0.8988	0.00495
1.7099	0.00997
3.2454	0.01179
1.7552	0.01097
0.8022	0.02814
0.2017	0.01439
0.5914	0.01034
0.3343	0.00854
0.6209	0.00826
2.7891	0.02194
0.1034	0.00528
2.8796	0.02045
3.0586	0.01177
0.5183	0.01002
0.0019	0.00057
0.3608	0.00773
0.1020	0.00549
0.3815	0.00825
13749	0.00919
0.7913	0.00623
0.4675	0.00923
0.9204	0.00422
0.9182	0.00413
0.7574	0.00810
00779	0.00424
0.1054	0.00502
5.3826	0.03893
5.5988	0.04013
12.9889	0.07715
28.9386	$0.279 C 6$
11.9375	0.06521
128413	008254
86071	006169
32406	001375

3.2454

7552
.8022
. 2017
3343
. 7891 . 1034 8796
3.0586 0019 . 3608 . 1020 3815
3749
.7913
.00623
002368
0.30938
$002368 \quad 1.9253$
$0.03090 \quad 2.3466$ $0.02370 \quad 1.9760$
. 5086
1.1933
0.7710
$000625 \quad 1.5692 \quad 1.2527$
$003508 \quad 2.32031 .5233$
$007134 \quad 2.0844 \quad 1.4438$

0	01748	2.7254
0.02554	1.6509	

0.02554	20277	1.4240

001331	1.7749	1.3323
0.00787	1.4772	1.2154

$0.05102 \quad 1.8775 \quad 1.3702$
$0.00710 \quad 3.0940 \quad 1.7590$
$0.00385 \quad 07622 \quad 08731$

0	01933	2.4801
0	1.5748	

0.05388	2.1908	1.4801

$002163 \quad 1.7862 \quad 1.3365$

0	02452	2.2309
1.4936		

0.00787	1.4230	1.1929

0.01975	2.1520	1.4670

0.00459	0.9418	0.9705
0.00450	0.9106	0.9543

$001069 \quad 2.1208 \quad 1.4563$

0	05444	16396	12805

$0.04767 \quad 1.6645 \quad 1.2901$

| 0.00723 | 14117 | 1881 |
| :--- | :--- | :--- | :--- |

$0.00717 \quad 1.5680 \quad 1.2522$

0.00594	1.1435	1.0693

0.00964	2.7036	1.6443

$000546 \quad 0.9381 \quad 0.9685$

0	00643	1.2975
0.00717	1391	

| 0.00717 | 12738 | 1286 |
| :--- | :--- | :--- | :--- |

10405

MEAN

| 002853 | 17000 | 12853 |
| :--- | :--- | :--- | :--- |
| 001200 | 1.6377 | 12797 |
| 005146 | 0.5746 | 02223 |

SUMMARY TABLE FOR SUBCLASS ND. 13 NAME =NORTHEAST

STAT NO	STATISTIC	- value	SE	CV	DEFF	DEFT
1	PRROP WORKEO LT 15 HRS./WK	0.3646	0.01004	002753	2.4881	1.5774
2	PROP EARNEO LT \$10.00	0.2588	0.01025	003861	3.2488	18024
3	PROP W/ LT \$1000 EXPENSES	0.4203	0.00935	0.02224	2.0795	14421
4	PROP ACCEPTED IN ARMED FORCES	0.0494	0.00382	0.07745	1.8161	1.3476
5	PROP 'SUCCESS IN WORK VERY IMPOR	0.8535	0.00555	0.00628	15570	12478
6	AVE ATT TO SELF	1.7794	0.01316	0.00739	16298	1.2766
7	AVE ATT TO PLANHING	3.0256	0.01466	0.00484	09798	0.9899
8	AVE IMPORTANCE OF PROX TO PSRENT	18171	0.01145	0.00630	1.5355	1.2391
9	AVE SEN VOCAB NOT ATTEMPTED	0.7486	0.04048	0.05408	4. 1177	2.0292
10	AVE BOTH MATH NOT ATTEMPTED	02870	0.01743	0.06075	1.9113	13825
11	PROP MT 3 HRS ON HOMEWORK	0.5096	001257	0.02467	35955	1. 8962
12	PRROP LT 8 AVERAGE	0.4061	0.01133	0.02791	3.0409	1.7438
13	PROP MT 3.50 MIN WAGE	0.6245	0.01087	0.01741	2.8372	16844
14	AVE ATT TO SCHOOL COUNSELING	2.6695	0.02954	0.01107	2.6153	1. 6172
15	PROP FATHER NOT US NATIVE	0.1414	0.00838	005925	3.3701	- 8358
16	AVE QUALITY OF INSTRUCTION	2.7979	0.02383	0.00852	2.9922	17298
17	AVE 'SOMEONE PREVENTS SUCCESS'	2.9004	0.01573	0.00542	11750	10840
18	PROP NEVER CUT CLASSES	0.5604	0.01398	0.02494	1.4874	2. 1184
19	PRROP HARD OF HEARING	0.0035	0.00084	0.23815	+. 2454	1. 1160
20	PROP W/ NO PLACE TO STUOY	0.4855	000995	002050	2.2714	15071
21	PROP NOT PLANNING ON CDLLEGE	02878	0.01237	0.04299	4.4936	2. 1198
22	PROP ABSENT MT 2 DAYS	04090	0.00894	0.02187	1.8865	1.3735
23	PROP OID NOT WORK LAST WK	0.3683	0.01110	003014	3.0194	17377
24	PROP NOT LOOKING FOR WORK	0.7461	000717	000961	1.5213	12334
25	PROP WHOSE MOM FINISHED COLLEGE	0.1627	0.91068	0.06563	5.3479	2.3125
26	PROP - GOOO LUCK NOT IMPORTANT	0.8806	000526	000598	1.0518	1.0256
27	PROP 'FEEL PROUD	0.8896	0.00525	0.00590	11038	10506
28	PROP EXPECT TO FINISH COLLEGE	05047	0.01598	003166	58093	24102
29	PROP W/ HANOICAP	0.1043	000523	005017	1.7980	1.3409
30	PROP W/ VOCATIONAL PROGRAM	02492	0.01380	0.05536	58638	2.4215
31	AVE BOTH REAOING TEST- RIGHT	48343	0.05258	0.01088	24701	1.5717
32	AVE BOTH VOCAB TEST- RIGHT	5.0216	0.06259	0.01246	36461	1.9095
33	AVE BOTH MATH TEST- RIGHT	11.5794	0. 12980	0.01121	31001	1.7607
34	AVE MOSAIC(1) TEST- RIGHT	28.3156	0.43037	0.01520	54776	2.3404
35	AVE PICTURE TEST- RIGHT	116470	0.09270	0.00796	1.6974	13029
36	AVE REAOING TEST- RIGHT	11.5430	011321	0.00981	24401	1.5621
37	AVE VISUAL TEST- RIGHT	7.7048	007796	0.01012	2.0868	1.4440
38	AVE EARNING/HR	3. 1013	0.01652	0.00533	1.4012	11837
MEAN				003017	2.7160	15992
MEOI AN				0.01896	2.4551	1. 5669
STANDAR	D DEVIATION			004006	13784	0.4037

NOTE SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES
\qquad
SE

Value	SE	CV	OEFF	OEFT
0.3392	0.00806	002375	2.7098	1.6462
0.2077	0.00666	0.03205	2.6801	16371
0.4319	000667	0.01544	1.7352	143173
0.0573	000329	0.05753	1.9193	$1+3854$
0.8904	0.00373	0.00419	1.0819	1.0401
1.6993	0.00955	000562	1.3991	1828
3.0033	0.01219	0.00406	0.9698	09848
1.8367	0.00884	0.00481	1.3117	1.1453
0.8528	0.05102	0.05983	7.9904	28267
0.3791	0.02216	0.05844	3.5209	1.8764
0.4139	0.00978	0.02362	3.6744	169169
0.4762	0.00958	$0.0201 /$	3 4264	18511
0.5892	0.00865	0.0148 C	2.8549	1.6896
2.4287	0.01792	0.00738	1.8010	13420
0.1422	0.00601	0.04229	2.8321	1.6829
2.6790	0.01945	000726	2.8308	1.6825
2.7997	0.01110	000396	08666	0.9309
0.5967	Q,00997	001670	3.7699	19416
0.0042	0.00080	0.18933 ${ }^{\prime}$	1.5417	1.2417
0.5157	0.00757	001469	2. 1488	14659
0.3287	0.00943	0.02870	4.0632	2.0157
0.4055	0.00771	0.01901	2. 2999	1.5168
0.4094	0.00804	0.01965	2.4948	5795
0.7905	0.00532	000673	1.5595	1.2488
0. 1294	0.00728	0.05624	50216	2.2409
08514	0.00570	000670	17010	13042
0.8719	000436	000500	1.0770	1.0978
0.4353	001017	0.02337	39462	19865
0. 1093	0.00428	003911	1.8784	1.3705
0.2781	0.004897	0.03226	37721	19422
41209	0.04917	Q 01193	38718	1.9677
40804	005068	0.01242	4.6213	2.1497
97629	011148	0.01142	44374	21065
24.7676	029296	001183	4.9769	22309
110460	008447	000765	23538	15342
100699	0.10888	001081	40066	20017
69910	006746	0.00965	29527	7184
30829	001528	0.00496	18241	3506

PROP WORKEO LT 15 HRS./WK
PROP EARNEO LT SIOOO
PROP W/ LT SIOOO EXPENSES
PROP ACCEPTEO IN ARMEO FORCES
PROP SUCCESS IN WORK VERY IMPOR
AVE ATT TO SELF
AVE ATT TO PLANNING
AVE IMPORTANCE OF PROX TO PARENT
AVE SEN VOCAB NOT ATTEMPTEO
AVE BOTH MATH NOT ATTEMPTEO
PROP MT 3 HRS ON HOMEWORK
PROP LT B AVERAGE
PROP MT 3.5O MIN WAGE
AVE ATT TO SCHOOL COUNSELING
PROP FATHER NOT US NATIVE
AVE OUALITY OF INSTRUCTION
AVE 'SOMEONE PREVENTS SUCCESS
PROP NEVER CUT CLASSES
PROP HARO OF HEARING
PROP W/ NO PLACE TO STUOY
PROP NOT PLANNING ON COLLEGE
PROP ABSENT MT 2 OAYS
PROP OIO NOT WORK LAST WK
PROP NOT LOOKING FOR WORK
PROP WHOSE MOM FINISHEO COLLEGE
PROP GDOO LUCK NOT IMPORTANT
PROP FEEL PROUO
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANOICAP
PROP W/ VOCATIONAL PROGRAM
AVE BOTH REAOING TEST- RIGHT
AVE BOTH VOCAB TEST- RIGHT
AVE BOTH MATH TEST- RIGHT
AVE MOSAIC(1) TEST- RIGHT
AVE PICTURE TEST- RIGHT
AVE READING TEST- RIGHT
AVE VISUAL TEST- RIGHT
AVE EARNING/HR

fote Summary statistics above exclude zero values

NAME *WEST

STAT NO	STATISTIC	VALUE	SE	CV	DEFF	OEF T
1	PROP WORKED LT 15 HRS /WK	0.3314	001068	0 C3223	2.6643	1.6323
2	FROP EARNED LT \$1000	0.1685	000788	0.04678	24271	15579
3	PROF W/ LT \$1000 EXPENSES	0.4190	0.01028	0.02454	2.2853	15117
4	PRGP ACCEPTED IN ARMEO FORCES	0.0423	000381	009010	18824	13720
5	PROP 'SUCCESS IN WORK VERY IMPOR	0.8716	C. 00610	0.00700	1.5102	1.2289
6	AVE ATT TO SELF	1.7507	0.01260	000720	1.4499	12041
	QVE ATT TO PLANNING	3.1521	0.01756	0.00557	1.2451	1. 1158
8	AVE IMPORTANCE OF PRUX TO PARENT	1.8131	001474	000813	2. 1594	14695
9	aVE SEN VOCAB NOT ATTEMPTED	0.8468	005076	0.05994	47848	21874
10	AVE BOTH MATH NOT ATTEMPTED	0.2871	002465	008587	3.0489	17461
11	PROP MT 3 HRS ON HCMEWORK	$0 . \therefore 477$	0.01383	0.03090	3.9823	1. 5956
12	PROP LT 8 AVERAGE	0.4761	0.01128	0.02370	26754	1.6203
13	PROP MT 350 MIN WAGE	06543	001205	001842	3.2546	18040
14	AVE ATT TO SCHDOL COUNSELING	2.6214	0.02870	0.01095	25017	15817
15	PROP FATHER NOT US NATIVE	0.1712	0.00954	0.05572	3.3962	1. 8429
16	AVE OUALITY OF INSTRUCTILN	2.7344	0.02630	000962	33025	1.8173
17	AVE 'SOMEONE PREVENTS SUCCESS'	2.9188	001543	0.00529	10303	1.0150
18	PROP NEVER CUT CLASSES	0.4254	0.01319	0.03100	3.6869	1.9201
19	PROP 4 RD OF HEARING	0.0038	0.00125	0.32572	2. 2063	1.4854
20	PROP W/ NO PLACE TO STUOY	0.4977	000963	0.01970	1. 9849	1.4089
$2 \cdot$	PROP NOT PLANNING ON COLLEGE	0.2351	001102	004688	3.6926	1 9216
22	PROP ABSENT MT 2 DAYS	0.5179	001113	002150	2.5485	15964
23	PROP OIO NOT WORK LAST WK	0.3706	001113	003004	2.7379	1.6547
24	PROP NOT LOOKING FOR WORK	0.7792	000713	000916	1.4853	1.2187
25	PROP WHOSE MOM FINISHEO COL:EGE	0.1734	0.01315	007585	7.0784	? 0605
26	¢ROP- GOOO LUCK NOT IMPORTANT	0.8852	0.00706	0.00797	1.6951	13019
27	PROP FEEL PROUO	0.8902	0.00539	0.00606	1.0225	1.0112
28	PROP EXPECT TO FINISH COLLEGE	0.4654	0.01392	0.02990	40238	2.0059
29	PFOF W/ HANOICAP	0. 1023	000538	005261	1.6990	13035
30	PROP W/ VOCז'TIOHAL PPOGRAM	02012	001037	0.05154	3.4828	18662
31	AVE BOTH READING TEST- RIGHT	4.5724	005951	001301	2.8425	168.0
32	AVE BOTH VOCAB TESI-RIGHT	4. 1390	0.06904	001457	3.9807	19952
33	AVE BOTH MATH TEST- RIGHT	10.9527	0.14006	0.01279	32149	17930
34	AVE MOSAIC(1) TEST-RIGHT	27.6622	040372	0.01459	4.4155	2.1013
35	AVE PICTURE IEST- RIGHT	11.1101	0.09678	000871	16258	12751
36	AVE REAOING TEST- RIGHT	11.0191	C 13100	0.01189	28763	16960
37	AVE VISUAL TEST- RIGHT	82003	0.09340	001139	2.4058	1.5511
38	AVE EARNING/HR	3.2996	002009	$\text { c } 00609$	1.9194	13854
MEAN				003481	2.1415	16195
MEDIAN				001906	25870	16084
STANDAR	D OEVIATION			005369	12043	03492

NOTE SUMMARY STATISTICS ABOVE EXCLUOF ZERO VALUES

NAME = GENERAL

STAT NO		STATISTIC	value	SE	CV	OEFF	OEFT
1	PROP	WORKEN L: 15 HRS./WK	0.3194	000622	0.01946	1.8406	13567
2	PROP	E EARNEO LT \$1000	0.1644	0.00447	0.02719	16079	1.2680
3	PRDP	W/ LT \$1000 EXPENSES	0.4579	000631	C. 01377	16811	1. 2966
4	PROP	P ACCEPTED IN ARMEO FORCES	00538	000266	0.04942	1.4575	12073
5	PROP	'SUCCESS IN WORK VERY IMPOR	08648	000400	000463	1.2415	11142
6	AVE	ATT TO SELF	1.7864	000796	0.00446	1.0305	1.0151
7	AVE	ATT TO PLANNING	2.9700	0.00994	000335	0.7492	08656
8	AVE	1 MPORTANCE DF' PROX IO PARENT	1.8061	0.00787	0.00436	12136	11016
9	AVE	SEN VOCAB NOT ATTEMPTEO	0.7729	0.03527	0.04563	4.3230	2.0792
10	AVE 8	BOTH MATH NOT ATTEMPTEO	0.3441	001684	0.04894	2.2365	1.4955
11	PROP	MT 3 HRS ON HOMEWORK	0.3444	000694	002016	2. 2027	1.4842
12	PROP	LT 8 average	05969	000751	001258	24033	1. 5503
13	PROP	MT 3\$50 MIN WAGE	0.6193	0.00679	0.01097	19947	1.4123
14	AVE	ATT TO SCHOOL COUNSELING	2.6161	001546	0.00591	14369	11987
15	PROP	FATHER NOT US MATIVE	0. 1237	0.00448	003619	1.9602	14001
16	AVE	QUALITY OF INSTRUCTION	2.5489	0.01346	0.00528	16478	1.2837
17	AVE	'SOME ONE PREVENTS SUCCESS'	2.7801	000855	0.00308	0.5994	0.7742
18	PROP	NEVER CUT CLASSES	0.4895	000807	001648	26872	1.6393
19	PROP	HARO OF HEARING	0.0042	000075	0.17925	1.4890	1.2202
20	PROP	W/ ND PLACE TO STUDY	05530	0.00614	001110	1.5494	12448
21	PROP	NOT PLANNING ON COLLEGE	04007	0.00781	0.01949	27333	1.6533
22	PROP	ABSENT MT 2 OAYS	04849	000646	001333	17215	1.3121
23	PROP	OIO NOT WORK LAST WK	0.3763	0.00642	0.01705	1.8093	1.3451
24	PROP	NOT LOOKING FOR WORK	0.7738	0.00487	O 00629	1.3710	11709
25	PROP	WHOSE MOM FINISHFN COLLEGE	0.1083	0.00469	004331	2.7141	1.6475
26	PROP	- GOOD LUCK NOT IMPORTANT	0.8613	000446	0.00518	11853	1.0887
27	PROP	FEEL PROUO	0.8608	000420	0.00488	1.0763	1.0375
28	PROP	EXPECT TO FIN?SH COLLEGE	- 3219	000705	0.02190	23796	15426
29	PROP	W, HANDICAP	01169	0.00371	003175	14587	12078
30	RROP	W/ VOCATIONAL PROGRAM	0.0	00	00	0.0	0.0
31	AVE 8	BOTH REAOING TEST- RIGHT	41094	0.03001	000730	1.7297	1.3152
32	AVE 8	BOTH VOCAB TEST- RIGHT	41475	0.02836	0.00684	17241	13131
33	AVE 8	8OTH MATH TEST- RIGHT	9.6897	0.06818	000704	20003	1.4143
34	AVE M	MOSAIC(1) TEST- RIGHT	26.3599	0.18859	000714	2.1459	1.4649
35	AVE P	PICTURE TEST- RIGHT	109484	0.05900	0.00539	1. 3062	1. 1429
36	AVE	REAOING TEST- RIGHT	9.9953	0.06057	0.00606	1.5412	1. 2415
37	AVE	VISUAL TEST- RIGHT	7. 3368	004670	000637	15213	12334
38	AVE	EARNING/HR	$3 \quad 1347$	001138	0.00363	1. 2341	11109
MEAN					$0 \subset 1987$	1.7569	13040
MEOIAN		-			001097	16478	: 2837
STANOAR	O DEV	VIATION			003023	06723	0.2407

NOTE SUMMARY STATISTICS ABOVE EXCLUOE ZERO VALUES

STAT NO	STATISTIC	VALUE	SE	CV	DEFF	DEFT
1	PRROF WORKEO LT 15 HRS./WK	03759	000683	0.01816	2.0995	1.4490
2	PROP EARNED LT \$ 1000	02956	0.00683	002310	2.4234	15567
3	PROP W/ LT \$1000 EXPENSES	0.3601	000647	001796	1. 9540	13979
4	PROP ACCEPTEO IN ARMEO FORCES	0.0286	0 00208	U. 07269	1. 6665	12909
5	PROP 'SUCCESS IN WORK VERY IMPOR	0.9065	0 001377	0.00416	1.5913	1. 2615
6	AVE ATT TO SELF	1. 7059	0.00868	000509	1.5544	12468
7	AVE ATT TO PLANNING	3.2285	0.00989	0.00306	0.9574	09785
8	AVE IMPORTANCE OF PROX TO PARENT	1.8011	000810	0.00450	14929	1.2218
9	AVE SEN VOCAB NOT ATTEMPTED	0.8394	0.02544	0.03031	3. 1245	17676
10	AVE BOTH MATH NOT ATTEMPTED	0.2054	001044	0.05083	2. 1815	14770
11	PROP MT 3 HRS ON HOMĖWORK	0.6458	0.00776	0.01202	2.7645	16627
12	PROP LT B AVERAGE	02670	000690	002586	2.5718	16037
13	PROP MT 350 MIN WAGE	0.5840	0.00729	0.01248	2.2890	1.5129
14	AVE ATT TO SCHOOL COUNSELING	2.7395	001770	0.00646	1.7291	1. 3150
15	PROP FATHER NOT US NATIVE	0.1235	000483	0.03906	2.3062	15186
16	AVE QUALITY OF INSTRUCTION	2.9392	0.01502	0.00511	3.0245	17391
17	AVE 'SOMEONE PREVENTS SUCCESS'	30198	000980	0.00324	09483	09738
18	PROP NEVER CUT CLASSES	0.6142	0009350	001385	31808	1.7835
19	PROP HARO OF HEARING	00031	0.00060	019138	12916	1. 1365
20	PROP W/ NO PLACE TO STUDY	04433	000679	0.01532	19908	1.4110
21	FROP NOT PLANPING ON COLLEGE	0.0809	0.00382	004722	2.2191	1.4897
22	PROP ABSENT MT 2 OAYS	0.3334	0.00615	0.01843	17927	13389
23	PROP DIO NOT WDRK LAST WK	0.3938	000760	0.01929	25497	1.5968
24	PROP NOT LOOKING FOR WORK	0.7871	000507	000644	1.5866	12596
25	PROP WHOSE MOM FINI SHED COLLEGE	02323	000811	003492	41481	20367
26	PROP- GOOD LUCK NOT IMPORTANT	0.9215	000311	0.00337	08969	09470
27	PRJP FEEL. PROUO	0.9254	0.00302	0.00326	0.9034	0.9505
28	PROP EXPECT TO FINISH COLLEGE	07732	000673	0.00870	2.6168	16176
29	PROP W/ HANOICAP	0.0769	000315	0.04101	15672	12519
30	PROP W/ VOCATIONAL PROGRAM	00	00	00	00	00
31	AVE BOTH REAOING TEST- RIGHT	5.4551	0.03228	0.00592	1.7345	13170
32	AVE BOTH VOCAB TEST- RIGHT	5.5198	0.03621	000656	2.2821	15107
33	AVE BOTH MATH TEST- RIGHT	13.1708	0.06892	0.00523	1.6824	12971
34	AVE MOSAIC(1) TEST- RIGHT	28.4413	022813	000802	33210	18224
35	AVE PICTURE TEST- RIGHT	12.1026	0.05057	0.00418	10328	1.0163
36	AVE REAOING TEST- RIGHT	17.9203	006943	000537	16687	1.2918
37	AVE VISUAL TEST- RIGHT	- 4213	0.05243	0.00623	1.6658	12907
38	AVE EARNING/HR	31317	001177	000376	13289	11528
MEAN				002115	20037	13917
MEDIAN				000870	17927	13389
StANOAR	O DEVIATION			003307	07508	02624

NOTE SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

NAME = VOCATIONAL
STAT NO
STATISTIC

0.2928	000703
0.1170	0.00487
04470	000720
0.0631	000356
0.8768	000450
1.7874	001025
29311	001248
18524	000909
07104	003240
0.3585	0.01906
03401	000868
05665	0.00820
0.6554	000793
2.2864	001693
01425	000568
2.6309	0.01399
27202	001148
0.5511	0.00935
00047	000110
05584	000754
04999	000863
04609	000783
0.3178	0.00713
07745	000619
0.0671	0.00396
08346	000574
08474	0.00526
01672	0.00608
01279	000512
1.0000	00
38208	0.03603
3.8079	0.03283
88909	007428
257482	022588
108014	0.07127
9.2779	0.07481
70404	005216
31676	0.01214

CV
DEFF
DEFT
CV

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{PROP WORKEO LT 15 HRS./WK} \\
\hline \multicolumn{2}{|l|}{PROP EARNED LT \$1000} \\
\hline PROP & W/ LT \$1000 EXPENSES \\
\hline PROP & ACCEPTED IN ARMEO FORCES \\
\hline PROP & 'SUCCESS IN WORK VERY IMPOR \\
\hline \multicolumn{2}{|l|}{AVE ATT TO SELF} \\
\hline \multicolumn{2}{|l|}{AVE ATT TO PLANNING} \\
\hline AVE & IMPORTANCE OF PROX TO PARENT \\
\hline \multicolumn{2}{|l|}{AVE SEN VOCAB NOT ATTEMPTED} \\
\hline \multicolumn{2}{|l|}{AVE BOTH MATH NOT ATTEMPTEO} \\
\hline \multicolumn{2}{|l|}{PROP MT 3 HRS ON HOMEWORK} \\
\hline PROP & LT 8 AVERAGE \\
\hline \multicolumn{2}{|l|}{PROP MT 350 MIN WAGE} \\
\hline \multicolumn{2}{|l|}{AVE ATT TO SCHOOL COUNSELING} \\
\hline \multicolumn{2}{|l|}{PROP FATHER NOT US NA} \\
\hline \multicolumn{2}{|l|}{AVE QUALITY OF INSTRUCTION} \\
\hline \multicolumn{2}{|l|}{AVE 'SOMEONE PREVENTS SUCCES} \\
\hline PROP & NEVER CUT CLASSES \\
\hline \multicolumn{2}{|l|}{PROP HARD OF HEARING} \\
\hline PROF & W/ NO PLACE TO Stuoy \\
\hline \multicolumn{2}{|l|}{PROP NOT PLANNING ON CDLL} \\
\hline \multicolumn{2}{|l|}{PROP ABSENT MT 2 DA} \\
\hline \multicolumn{2}{|l|}{PROP OID NOT WORK LAST} \\
\hline \multicolumn{2}{|l|}{PROP NOT LOOKING FOR WORK} \\
\hline PROP & 'JHOSE MOM FINISHED COLLEGE \\
\hline \multicolumn{2}{|l|}{PROP- GOOD LUCK NOT IMPORTANT} \\
\hline \multicolumn{2}{|l|}{PROP FEEL PROUO} \\
\hline PROP & EXPECT TO FINISH COLLEGE \\
\hline \multicolumn{2}{|l|}{PROP W/ HANDICAP} \\
\hline \multicolumn{2}{|l|}{PROP W/ VOCATIONAL PROGRAM} \\
\hline \multicolumn{2}{|l|}{AVE 8OTH REAOING TEST- RIGHT} \\
\hline \multicolumn{2}{|l|}{AVE BOTH VOCAB TEST- RIGHT} \\
\hline \multicolumn{2}{|l|}{AVE BOTH MATH TEST- RIGHT} \\
\hline \multicolumn{2}{|l|}{AVE MOSAIC(I) TEST- RIGHT} \\
\hline \multicolumn{2}{|l|}{AVE PICTURE TEST- RIGHT} \\
\hline \multicolumn{2}{|l|}{AVE READING TEST- RIGHT} \\
\hline \multicolumn{2}{|l|}{AVE VISUAL TEST- RIGHT} \\
\hline AVE E & EARNING/HR \\
\hline
\end{tabular}
PROP W/ LT $1000 EXPENSES
PROP ACCEPTED IN ARMEO FORCES
PROP 'SUCCESS IN WORK VERY IMPOR
AVE ATT TO PLANNING
AVE IMPORTANCE OF PROX TO PARENT
AVE SEN VOCAB NOT ATTEMPTED
AVE BOTH MATH NOT ATTEMPTEO
PROP MT 3 HRS ON HOMEWORK
PROP LT B AVERAGE
AVE ATT TO SCHOOL COUNSELING
PROP FATHER NOT US NATIVE
AVE QUALITY OF INSTRUCTION
AVE 'SOMEONE PREVENTS SUCCESS'
PROP NEVER CUT CLASSES
PROP HARD OF HEARING
PROF W/ NO PLACE TO STUOY
PROP NOT PLANNING ON CDLLEGE
PROP ABSENT MT 2 DAYS:
PROP OID NOT WORK LAST WK
PROP 'WHOSE MOM FINISHED COLLEGE
PROP- GOOD LUCK NOT IMPORTANT
PROP FEEL PROUO
PROP EXPECT TO FINISH COLLEGE
PROP W/ HANDICAP
PROP W/ VOCATIONAL PROGRAM
AVE 8OTH REAOING TEST- RIGHT
BOTH VOCAB TEST- RIGHT
AVE BOTH MATH IEST- RIGHT
MOSAIC(I) TEST- RIGHT
AVE PICTURE TEST- RIGHT
AVE VISUAL TEST- RIGHT
AVE EARNING/HR
```

value Si

0.02401	1.6740	12938
004163	17302	13154
0.01611	14936	12221
0.05637	15304	12371
0.00513	10914	1.0447
000574	1. 1042	10508
0.00426	0.7653	08748
0.00490	1 , 2333	1.0116
0.04561	26828	16379
0.05316	18714	13680
002553	23457	1.5316
001447	1.8984	1.3778
0.01210	19127	1.3830
0.00741	13413	11582
003984	18876	1.3739
000532	10540	10266
000422	06966	08346
001696	24370	15611
023601	1.9622	14008
001350	15806	12572
0.01727	2.1077	14518
001700	17203	13116
0.02244	16380	1.2798
0.00799	14926	12217
0.05903	2.0762	14409
000687	1.2177	1. 1035
000620	1.0631	1.0311
0.03638	1.9035	1.3797
004007	17556	1.3250
00	00	00
000943	17828	13352
000862	1.6830	12973
0.00835	17624	1.3275
000877	20425	1.4292
000660	12595	1. 1223
0.00806	16921	13008
0.00741	13116	11453
000383	09257	09621

MEAN

0	02450	16086	1	2548
0	01210	16830	1	2973
0	03928	04607	0	1874

NOTE SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

[^0]: *

 Reproductions supplied by EDRS are the best that can be made

[^1]: 1/ See table 2.3.

[^2]: 1 The other two available augmentation options were the Supplementary State Sample and the Independent State. Sample. In the former, the state sample consisted of two mutually exclusive varts: 1) the schools.from that state in the national sample, and 2) a separate supplementary school sample which, when added to Part One, created within-state representative sample. However, the supplementary part of the sample did not become part of the national sample.

 The Independent State Sample involved selecting a separate state-representative sample. The se!ections were made after the national sample was drawn, and the frame of schouls for the independent sample did not include the schools selected for the nat.tonal sample.

[^3]: ${ }^{1}$ While we had set the desired sample size for other Catholic schools at 48 , we used the calculated expected sample size of 47 schools in this calculation, making for 137 (instead of 138) sampled, private schools $\left[\sum_{t=4}^{6} D\left(n_{t}\right)\right]$.

[^4]: ${ }^{1}$ Frankel, M., Inference from survey samples: An empirical investigation. Ann Arbor, Mchigan: Institute for Socíal Research, 1971.
 ${ }^{2}$ This index was the degree to which the distribution of the statictic defined below conformed to Student's t distribution:

[^5]: NOTE: SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

[^6]: NOTE SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

[^7]: note summary statistics aboye exclude zero values

[^8]: NOTE. SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

[^9]: NOTE SLKMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

[^10]: NOTE SUMMARY STATISTICS ABOVE EXCLUDE ZERO VALUES

